Download Free Recrystallization Types Techniques And Applications Book in PDF and EPUB Free Download. You can read online Recrystallization Types Techniques And Applications and write the review.

A very large part of metallic materials is used in the wrought form. Several thermomechanical processing (TMP) steps are usually employed to produce the intermediate or final products, during which recrystallization and its related phenomena such as work hardening, recovery and grain growth may take place. The sophisticated controlling of recrystallization is one of the most effective ways to tailor the microstructures and mechanical properties of metallic components. Recrystallization: Types, Techniques and Applications is the joint work of several well-known active scientists within this field, and each one focuses on the latest developments of their specific topics. This book covers the deformation structure and recovery, recrystallization and grain growth phenomena, characterization of recrystallization, interaction between recrystallization and solute/second phase particles, the competition between phase transformation and recrystallization, as well as numerical modelling of recrystallization. It is a standard reference for practicing engineers and researchers involved in hot deformation and heat treatment of metallic materials.
The annealing of deformed materials is of both technological importance and scientific interest. The phenomena have been most widely studied in metals, although they occur in all crystalline materials such as the natural deformation of rocks and the processing of technical ceramics. Research is mainly driven by the requirements of industry, and where appropriate, the book discusses the extent to which we are able to formulate quantitative, physically-based models which can be applied to metal-forming processes. The subjects treated in this book are all active research areas, and form a major part of at least four regular international conference series. However, there have only been two monographs published in recent times on the subject of recrystallization, the latest nearly 20 years ago. Since that time, considerable advances have been made, both in our understanding of the subject and in the techniques available to the researcher. The book covers recovery, recrystallization and grain growth in depth including specific chapters on ordered materials, two-phase alloys, annealing textures and annealing during and after hot working. Also contained are treatments of the deformed state and the structure and mobility of grain boundaries, technologically important examples and a chapter on computer simulation and modelling. The book provides a scientific treatment of the subject for researchers or students in Materials Science, Metallurgy and related disciplines, who require a more detailed coverage than is found in textbooks on physical metallurgy, and a more coherent treatment than will be found in the many conference proceedings and review articles.
Now in its fifth edition, the book has been updated to include more detailed descriptions of new or more commonly used techniques since the last edition as well as remove those that are no longer used, procedures which have been developed recently, ionization constants (pKa values) and also more detail about the trivial names of compounds.In addition to having two general chapters on purification procedures, this book provides details of the physical properties and purification procedures, taken from literature, of a very extensive number of organic, inorganic and biochemical compounds which are commercially available. This is the only complete source that covers the purification of laboratory chemicals that are commercially available in this manner and format. * Complete update of this valuable, well-known reference* Provides purification procedures of commercially available chemicals and biochemicals* Includes an extremely useful compilation of ionisation constants
Crystallization is an important separation and purification process used in industries ranging from bulk commodity chemicals to specialty chemicals and pharmaceuticals. In recent years, a number of environmental applications have also come to rely on crystallization in waste treatment and recycling processes.The authors provide an introduction to the field of newcomers and a reference to those involved in the various aspects of industrial crystallization. It is a complete volume covering all aspects of industrial crystallization, including material related to both fundamentals and applications. This new edition presents detailed material on crystallization of biomolecules, precipitation, impurity-crystal interactions, solubility, and design. Provides an ideal introduction for industrial crystallization newcomers Serves as a worthwhile reference to anyone involved in the fieldCovers all aspects of industrial crystallization in a single, complete volume
Crystallization is a natural occurring process but also a process abundantly used in the industry. Crystallization can occur from a solution, from the melt or via deposition of material from the gas phase (desublimation). Crystals distinguish themself from liquids, gases and amorphous substances by the long-range order of its building blocks that entail the crystals to be formed of well-defined faces, and give rise to a large number of properties of the solid. Crystallization is used at some stage in nearly all process industries as a method of production, purification or recovery of solid materials. Crystallization is practiced on all scales: from the isolation of the first milligrams of a newly synthesized substance in the research laboratory to isolating products on the mulit-million tonne scale in industry. The book describes the breadth of crystallization operations, from isolation from a reaction broth to purification and finally to tailoring product properties. In the first section of the book, the basic mechanisms - nucleation, growth, attrition and agglomeration are introduced. It ensures an understanding of supersaturation, the driving force of crystallization. Furthermore, the solubility of the substance and its dependences on process conditions and the various techniques of crystallization and their possibilities and limitations are discussed. Last but not least, the first part includes an intensive treatment of polymorphism . The second part builds on the basics, exploring how crystallization processes can be developed, either batch-wise or continuous, from solution or from the melt. A discussion of the purification during crystallization serves as a link between the two sections, where practical aspects and an insight using theoretical concepts are combined. Mixing and its influence on the crystallization as well as the mutual interference of down-stream processes with the crystallization are also treated. Finally, techniques to characterize the crop are discussed. The third part of the book is dedicated to accounts of actual developments and of carried-out crystallizations. Typical pitfalls and strategies to avoid these as well as the design of robust processes are presented.
Crystallization is one of the most ancient and interdisciplinary topics of research known to mankind. Crystals can be organic or inorganic and may be produced from melts, liquid solutions, vapors or even in solid state. Notwithstanding its inherently high complexity, the crystallization process is part of our everyday lives, from ice making in our homes to the most state-of-the-art chemical and electronic industry. In this book, our purpose was to present new insights to the reader, as well as crucial and very useful information for researchers working in this field, while simultaneously creating a comprehensive text about crystallization processes which may serve as a starting point for people with different backgrounds.
Organic Solvents Physical Properties and Methods of Purification, Fourth Edition (Volume II in the Techniques of Chemistry series, Edited by Arnold Weissberger) Edited by John A. Riddick, William B. Bunger, and Theodore K. Sakano This fourth edition updates and expands the material of the 15-year-old third edition. Besides revising the physical properties of preparation techniques for previously noted solvents, over 150 new solvents nave been added, many selected to complete groups of isomers and expand homologous series listed in the previous edition. Several isomeric and homologous series are initiated here, including the xylenols, chlorinated toluenes, xylidenes, picolines, lutidines, and silanes. 1986 (0 471-08467-0) 1,325 pp. Physical Methods of Chemistry Volume One: Components of Scientific Instruments and Applications of Computers to Chemical Research, Second Edition Edited by Bryant W. Rossiter and John F. Hamilton Now in a revised Second Edition, the classic Physical Methods of Chemistry series is an independent 8-volume set which surveys the most prevalent methods of determining a wide variety of physical properties of matter. Volume One presents general laboratory techniques common to many of the specific physical methods that are detailed in subsequent volumes. An excellent new work that also serves as a resource of information on a spectrum of components, tools, and techniques that are often used but rarely treated comprehensively in one book. 1986 (0 471-08034-9) 834 pp. Volume Two: Electrochemical Methods, Second Edition Edited by Bryant W. Rossiter and John F. Hamilton Volume Two presents a thorough, up-to-date survey of the applications of electrometric methods in chemical systems. Following an introductory chapter on electrochemical theory common to all electroanalytical methods, it provides information on the latest techniques, especially those with broad applications, including polarography. 1986 (0 471-08027-6) 904 pp.
Filled with industrial examples emphasizing the practical applications of crystallization methodologies Based on the authors' hands-on experiences as process engineers at Merck, Crystallization of Organic Compounds guides readers through the practical aspects of crystallization. It uses plenty of case studies and examples of crystallization processes, ranging from development through manufacturing scale-up. The book not only emphasizes strategies that have been proven successful, it also helps readers avoid common pitfalls that can render standard procedures unsuccessful. The goal of this text is twofold: Build a deeper understanding of the fundamental properties of crystallization as well as the impact of these properties on crystallization process development. Improve readers' problem-solving abilities by using actual industrial examples with real process constraints. Crystallization of Organic Compounds begins with detailed discussions of fundamental thermodynamic properties, nucleation and crystal growth kinetics, process dynamics, and scale-up considerations. Next, it investigates modes of operation, including cooling, evaporation, anti-solvent, and reactive crystallization. The authors conclude with special applications such as ultrasound in crystallization and computational fluid dynamics in crystallization. Most chapters feature multiple examples that guide readers step by step through the crystallization of active pharmaceutical ingredients (APIs). With its focus on industrial applications, this book is recommended for chemical engineers and chemists who are involved with the development, scale-up, or operation of crystallization processes in the pharmaceutical and fine chemical industries.
The 14th International Symposium on Superalloys (Superalloys 2020) highlights technologies for lifecycle improvement of superalloys. In addition to the traditional focus areas of alloy development, processing, mechanical behavior, coatings, and environmental effects, this volume includes contributions from academia, supply chain, and product-user members of the superalloy community that highlight technologies that contribute to improving manufacturability, affordability, life prediction, and performance of superalloys.
Process Understanding is the underpinning knowledge that allows the manufacture of chemical entities to be carried out routinely, robustly and to the required standard of quality. This area has gained in importance over the last few years, particularly due to the recent impetus from the USA`s Food and Drug Administration. This book covers the multidisciplinary aspects required for successful process design, safety, modeling, scale-up, PAT, pilot plant implementation, plant design as well the rapidly expanding area of outsourcing. In discussing what process understanding means to different disciplines and sectors throughout a product`s life cycle, this handbook and ready reference reveals the factors important to the development and manufacture of chemicals. The book focuses on the fundamental scientific understanding necessary. for a smoother technical transfer between the disciplines, leading to more effective and effi cient process development and manufacturing. A range of case studies are used to exemplify and illustrate the main issues raised. As a result, readers will appreciate that process understanding can deliver a real competitive advantage within the pharmaceuticals and fine chemicals industry. This book serves as an aid to meeting the stringent regulations required by the relevant authorities through demonstrable understanding of the underlying science.