Download Free Recoverable And Recyclable Catalysts Book in PDF and EPUB Free Download. You can read online Recoverable And Recyclable Catalysts and write the review.

Recoverable and Recyclable Catalysts There is continued pressure on chemical and pharmaceutical industries to reduce chemical waste and improve the selectivity and efficiency of synthetic processes. The need to implement green chemistry principles is a driving force towards the development of recoverable and recyclable catalysts. The design and synthesis of recoverable catalysts is a highly challenging interdisciplinary field combining chemistry, materials science engineering with economic and environmental objectives. Drawing on international research and highlighting recent developments, this book serves as a practical guide for both experts and newcomers to the field. Topics covered include: An introduction to the principles of catalyst recovery and recycling Catalysts on insoluble and soluble support materials Thermomorphic catalysts, self-supported catalysts and perfluorous catalytic systems The development of reusable organic catalysts Continuous flow and membrane reactors Each chapter combines principles with practical information on the synthesis of catalysts and strategies for catalyst recovery. The book concludes with a comparison of different catalytic systems, using case studies to illustrate the key features of each approach. Recoverable and Recyclable Catalysts is a valuable reference source for academic researchers and professionals from a range of pharmaceutical and chemical industries, particularly those working in catalysis, organic synthesis and sustainable chemistry.
This book looks at new ways of tackling the problem of separating reaction products from homogeneous catalytic solutions. The new processes involve low leaching supported catalysts, soluble supports such as polymers and dendrimers and unusual solvents such as water, fluorinated organics, ionic liquids and supercritical fluids. The advantages of the different possibilities are discussed alongside suggestions for further research that will be required for commercialisation. Unlike other books, in addition to the chemistry involved, the book looks at the process design that would be required to bring the new approaches to fruition. Comparisons are given with existing processes that have already been successfully applied and examples are given where these approaches are not suitable. The book includes: - New processes for the separation of products from solutions containing homogeneous catalysts - Catalysts on insoluble or soluble supports – fixed bed catalysts - continuous flow or ultrafiltration - Biphasic systems: water - organic, fluorous - organic, ionic liquid – organic, supercritical fluids (monophasic or biphasic with water, organic or ionic liquid) - Comparisons with current processes involving atmospheric or low temperature distillation - Consideration of Chemistry and Process Design - Advantages and disadvantages of each process exposed - Consideration of what else is need for commercialisation
A comprehensive resource on techniques and applications for immobilizing catalysts Catalyst Immobilization: Methods and Applications covers catalyst immobilization topics including technologies, materials, characterization, chemical activity, and recyclability. The book also presents innovative applications for supported catalysts, such as flow chemistry and machine-assisted organic synthesis. Written by an international panel of expert contributors, this book outlines the general principles of catalyst immobilization and explores different types of supports employed in catalyst heterogenization. The book?s chapters examine the immobilization of chiral organocatalysts, reactions in flow reactors, 3D printed devices for catalytic systems, and more. Catalyst Immobilization offers a modern vision and a broad and critical view of this exciting field. This important book: -Offers a guide to supported and therefore recyclable catalysts, which is one of the most important tools for developing a highly sustainable chemistry -Presents various immobilization techniques and applications -Explores new trends, such as 3D printed devices for catalytic systems -Contains information from a leading international team of authors Written for catalytic chemists, organic chemists, process engineers, biochemists, surface chemists, materials scientists, analytical chemists, Catalyst Immobilization: Methods and Applications presents the latest developments and includes a review of the innovative trends such as flow chemistry, reactions in microreactors, and beyond.
This book covers advances in the methods of catalytic asymmetric synthesis and their applications. Coverage moves from new materials and technologies to homogeneous metal-free catalysts and homogeneous metal catalysts. The applications of several methodologies for the synthesis of biologically active molecules are discussed. Part I addresses recent advances in new materials and technologies such as supported catalysts, supports, self-supported catalysts, chiral ionic liquids, supercritical fluids, flow reactors and microwaves related to asymmetric catalysis. Part II covers advances and milestones in organocatalytic, enzymatic and metal-based mediated asymmetric synthesis, including applications for the synthesis of biologically active molecules. Written by leading international experts, this book consists of 16 chapters with 2000 References and illustrations of 560 schemes and figures.
Auf fortgeschrittenem Niveau und mit didaktischem Anspruch bietet Ihnen dieser Band zahlreiche Fragen mit Antworten und eine breite Palette von Fallstudien aus der Industrie, ergänzt durch weiterführende Literaturhinweise und Referenzen der Originalliteratur. Insbesondere geht es um die modernsten katalytischen Prozesse mit ihren Anwendungen in der Pharmazie und der Feinchemikalien-Industrie, wobei auch kommerzielle Aspekte besprochen werden. Der Autor, ein erfahrener Dozent mit Industriepraxis, legt Chemikern und Chemieingenieuren damit ein praxistaugliches Hilfsmittel vor.
Sustainable Catalysis in Ionic Liquids provides an up-to-date overview of the relatively underexplored area of the use of room temperature ionic liquids as organocatalysts for a range of organic reactions, including polymerizations. Using organic molecules to promote reactions is an attractive option as these organic molecules can be safer than metal-based options. However, it is still important to be able to recycle and reuse these organic promoters. Ionic liquids provide this opportunity.
This book looks at new ways of tackling the problem of separating reaction products from homogeneous catalytic solutions. The new processes involve low leaching supported catalysts, soluble supports such as polymers and dendrimers and unusual solvents such as water, fluorinated organics, ionic liquids and supercritical fluids. The advantages of the different possibilities are discussed alongside suggestions for further research that will be required for commercialisation. Unlike other books, in addition to the chemistry involved, the book looks at the process design that would be required to bring the new approaches to fruition. Comparisons are given with existing processes that have already been successfully applied and examples are given where these approaches are not suitable. The book includes: - New processes for the separation of products from solutions containing homogeneous catalysts - Catalysts on insoluble or soluble supports – fixed bed catalysts - continuous flow or ultrafiltration - Biphasic systems: water - organic, fluorous - organic, ionic liquid – organic, supercritical fluids (monophasic or biphasic with water, organic or ionic liquid) - Comparisons with current processes involving atmospheric or low temperature distillation - Consideration of Chemistry and Process Design - Advantages and disadvantages of each process exposed - Consideration of what else is need for commercialisation
This book provides an interdisciplinary, integrative overview of environmental problem-solving using mild reaction conditions, green reagents, waste free and energy efficient synthesis in both industry and academic world. Discussions include a broad, integrated perspective on sustainability, integrated risk, multi-scale changes and impacts taking place within ecosystems worldwide. Features: This book serves as a reference book for scientific investigators who need to do greener synthesis of organic compounds, drugs and natural products under mild reaction condition using green reagents, eco-friendly catalysts and benign reaction mediums over traditional synthetic processes which is a key driving force of scientists. Greener synthesis of multiple value-added heterocycles opens up a new horizon towards the organic catalysis and for this purpose, development of natural resources acts as an effective catalyst. Using environmentally friendly reaction medium e.g. ACC, WETSA, WEBSA have been used for the synthesis of some crucial heterocyclic scaffolds such as bisenols and 2-amino-4H-pyrans, tetraketones, pyrans, and biaryls. This book can also be used as a textbook for graduate and post graduate level courses for students. Furthermore, the problems with answers in book will add better understanding for students.
With the increasing demand for optimization of energy storage, maintenance of the environment, and effective production, control on nanostructures of catalysts and optimization of their organization have become key to achieving high efficiency and specificity in energy and material conversion systems. This book emphasizes and summarizes the novel design of soft matters (molecules, polymers, assembled motifs, etc.) for nanocatalysts and nanocatalyst supports. The diversity or specialty of soft matters offers a new perspective and great promise for the development of new nanocatalytic systems for future requirements. Soft matters can provide a simple and well-defined space for the discovery of new catalysts. This book covers nonmetallic organocatalysts, organometallic compounds, dendrimers, ionic liquids, enzymes, polymers, various organized nanoarchitectures for supporting catalysts, and molecular dynamics in catalytic surface reactions. It gives readers a complete picture of the catalysis systems based on soft matters and is a useful reference for advanced undergraduate- and graduate-level students and researchers in chemistry, biology, materials science, nanoscience, polymer science, and catalysis.