Download Free Reconstruction From Spatio Spectrally Coded Multispectral Light Fields Book in PDF and EPUB Free Download. You can read online Reconstruction From Spatio Spectrally Coded Multispectral Light Fields and write the review.

In dieser Arbeit werden spektral kodierte multispektrale Lichtfelder untersucht, wie sie von einer Lichtfeldkamera mit einem spektral kodierten Mikrolinsenarray aufgenommen werden. Für die Rekonstruktion der kodierten Lichtfelder werden zwei Methoden entwickelt, eine basierend auf den Prinzipien des Compressed Sensing sowie eine Deep Learning Methode. Anhand neuartiger synthetischer und realer Datensätze werden die vorgeschlagenen Rekonstruktionsansätze im Detail evaluiert. -In this work, spatio-spectrally coded multispectral light fields, as taken by a light field camera with a spectrally coded microlens array, are investigated. For the reconstruction of the coded light fields, two methods, one based on the principles of compressed sensing and one deep learning approach, are developed. Using novel synthetic as well as a real-world datasets, the proposed reconstruction approaches are evaluated in detail.
Optical measurement methods are becoming increasingly important for high-precision production of components and quality assurance. The increasing demand can be met by modern imaging systems with advanced optics, such as light field cameras. This work explores their use in the deflectometric measurement of specular surfaces. It presents improvements in phase unwrapping and calibration techniques, enabling high surface reconstruction accuracies using only a single monocular light field camera.
The increasing use of automated laser welding processes causes high demands on process monitoring. This work demonstrates methods that use a camera mounted on the focussing optics to perform pre-, in-, and post-process monitoring of welding processes. The implementation uses machine learning methods. All algorithms consider the integration into industrial processes. These challenges include a small database, limited industrial manufacturing inference hardware, and user acceptance.
Deep learning is widely applied to sparse 3D data to perform challenging tasks, e.g., 3D object detection and semantic segmentation. However, the high performance of deep learning comes with high costs, including computational costs and the effort to capture and label data. This work investigates and improves the efficiency of deep learning for sparse 3D data to overcome the obstacles to the further development of this technology.
This work presents model-based algorithmic approaches for interference-invariant time delay estimation, which are specifically suited for the estimation of small time delay differences with a necessary resolution well below the sampling time. Therefore, the methods can be applied particularly well for transit-time ultrasonic flow measurements, since the problem of interfering signals is especially prominent in this application.
The proliferation of harmful phytoplankton in marine ecosystems can cause massive fish kills, contaminate seafood with toxins, impact local and regional economies and dramatically affect ecological balance. Real-time observations are essential for effective short-term operational forecasting, but observation and modelling systems are still being developed. This volume provides guidance for developing real-time and near real-time sensing systems for observing and predicting plankton dynamics, including harmful algal blooms, in coastal waters. The underlying theory is explained and current trends in research and monitoring are discussed.Topics covered include: coastal ecosystems and dynamics of harmful algal blooms; theory and practical applications of in situ and remotely sensed optical detection of microalgal distributions and composition; theory and practical applications of in situ biological and chemical sensors for targeted species and toxin detection; integrated observing systems and platforms for detection; diagnostic and predictive modelling of ecosystems and harmful algal blooms, including data assimilation techniques; observational needs for the public and government; and future directions for research and operations.
The Fourier transform is one of the most fundamental tools for computing the frequency representation of signals. It plays a central role in signal processing, communications, audio and video compression, medical imaging, genomics, astronomy, as well as many other areas. Because of its widespread use, fast algorithms for computing the Fourier transform can benefit a large number of applications. The fastest algorithm for computing the Fourier transform is the Fast Fourier Transform (FFT), which runs in near-linear time making it an indispensable tool for many applications. However, today, the runtime of the FFT algorithm is no longer fast enough especially for big data problems where each dataset can be few terabytes. Hence, faster algorithms that run in sublinear time, i.e., do not even sample all the data points, have become necessary. This book addresses the above problem by developing the Sparse Fourier Transform algorithms and building practical systems that use these algorithms to solve key problems in six different applications: wireless networks; mobile systems; computer graphics; medical imaging; biochemistry; and digital circuits. This is a revised version of the thesis that won the 2016 ACM Doctoral Dissertation Award.
Computational Photography combines plentiful computing, digital sensors, modern optics, actuators, probes, and smart lights to escape the limitations of traditional film cameras and enables novel imaging applications. This book provides a practical guide to topics in image capture and manipulation methods for generating compelling pictures for graphics, special effects, scene comprehension, and art. The computational techniques discussed cover topics in exploiting new ideas in manipulating optics, illumination, and sensors at time of capture. In addition, the authors describe sophisticated reconstruction procedures from direct and indirect pixel measurements that go well beyond the traditional digital darkroom experience.
Land management issues, such as mapping tree species, recognizing invasive plants, and identifying key geologic features, require an understanding of complex technical issues before the best decisions can be made. Hyperspectral remote sensing is one the technologies that can help with reliable detection and identification. Presenting the fundamenta
Computer Vision Metrics provides an extensive survey and analysis of over 100 current and historical feature description and machine vision methods, with a detailed taxonomy for local, regional and global features. This book provides necessary background to develop intuition about why interest point detectors and feature descriptors actually work, how they are designed, with observations about tuning the methods for achieving robustness and invariance targets for specific applications. The survey is broader than it is deep, with over 540 references provided to dig deeper. The taxonomy includes search methods, spectra components, descriptor representation, shape, distance functions, accuracy, efficiency, robustness and invariance attributes, and more. Rather than providing ‘how-to’ source code examples and shortcuts, this book provides a counterpoint discussion to the many fine opencv community source code resources available for hands-on practitioners.