Download Free Reconstruction Free Compressive Vision For Surveillance Applications Book in PDF and EPUB Free Download. You can read online Reconstruction Free Compressive Vision For Surveillance Applications and write the review.

Compressed sensing (CS) allows signals and images to be reliably inferred from undersampled measurements. Exploiting CS allows the creation of new types of high-performance sensors including infrared cameras and magnetic resonance imaging systems. Advances in computer vision and deep learning have enabled new applications of automated systems. In this book, we introduce reconstruction-free compressive vision, where image processing and computer vision algorithms are embedded directly in the compressive domain, without the need for first reconstructing the measurements into images or video. Reconstruction of CS images is computationally expensive and adds to system complexity. Therefore, reconstruction-free compressive vision is an appealing alternative particularly for power-aware systems and bandwidth-limited applications that do not have on-board post-processing computational capabilities. Engineers must balance maintaining algorithm performance while minimizing both the number of measurements needed and the computational requirements of the algorithms. Our study explores the intersection of compressed sensing and computer vision, with the focus on applications in surveillance and autonomous navigation. Other applications are also discussed at the end and a comprehensive list of references including survey papers are given for further reading.
The efficiency of solar energy farms requires detailed analytics and information on each panel regarding voltage, current, temperature, and irradiance. Monitoring utility-scale solar arrays was shown to minimize the cost of maintenance and help optimize the performance of the photo-voltaic arrays under various conditions. We describe a project that includes development of machine learning and signal processing algorithms along with a solar array testbed for the purpose of PV monitoring and control. The 18kW PV array testbed consists of 104 panels fitted with smart monitoring devices. Each of these devices embeds sensors, wireless transceivers, and relays that enable continuous monitoring, fault detection, and real-time connection topology changes. The facility enables networked data exchanges via the use of wireless data sharing with servers, fusion and control centers, and mobile devices. We develop machine learning and neural network algorithms for fault classification. In addition, we use weather camera data for cloud movement prediction using kernel regression techniques which serves as the input that guides topology reconfiguration. Camera and satellite sensing of skyline features as well as parameter sensing at each panel provides information for fault detection and power output optimization using topology reconfiguration achieved using programmable actuators (relays) in the SMDs. More specifically, a custom neural network algorithm guides the selection among four standardized topologies. Accuracy in fault detection is demonstrate at the level of 90+% and topology optimization provides increase in power by as much as 16% under shading.
The adaptive configuration of nodes in a sensor network has the potential to improve sequential estimation performance by intelligently allocating limited sensor network resources. In addition, the use of heterogeneous sensing nodes provides a diversity of information that also enhances estimation performance. This work reviews cognitive systems and presents a cognitive fusion framework for sequential state estimation using adaptive configuration of heterogeneous sensing nodes and heterogeneous data fusion. This work also provides an application of cognitive fusion to the sequential estimation problem of target tracking using foveal and radar sensors.
The two-volume set of LNCS 11941 and 11942 constitutes the refereed proceedings of the 8th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2019, held in Tezpur, India, in December 2019. The 131 revised full papers presented were carefully reviewed and selected from 341 submissions. They are organized in topical sections named: Pattern Recognition; Machine Learning; Deep Learning; Soft and Evolutionary Computing; Image Processing; Medical Image Processing; Bioinformatics and Biomedical Signal Processing; Information Retrieval; Remote Sensing; Signal and Video Processing; and Smart and Intelligent Sensors.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Monitoring of public and private sites has increasingly become a very sensitive issue resulting in a patchwork of privacy laws varying from country to country -though all aimed at protecting the privacy of the citizen. It is important to remember, however, that monitoring and vi sual surveillance capabilities can also be employed to aid the citizen. The focus of current development is primarily aimed at public and cor porate safety applications including the monitoring of railway stations, airports, and inaccessible or dangerous environments. Future research effort, however, has already targeted citizen-oriented applications such as monitoring assistants for the aged and infirm, route-planning and congestion-avoidance tools, and a range of environment al monitoring applications. The latest generation of surveillance systems has eagerly adopted re cent technological developments to produce a fully digital pipeline of digital image acquisition, digital data transmission and digital record ing. The resultant surveillance products are highly-fiexihle, capahle of generating forensic-quality imagery, and ahle to exploit existing Internet and wide area network services to provide remote monitoring capability.
Digital image sequences (including digital video) are increasingly common and important components in technical applications ranging from medical imaging and multimedia communications to autonomous vehicle navigation. The immense popularity of DVD video and the introduction of digital television make digital video ubiquitous in the consumer domain. Digital Image Sequence Processing, Compression, and Analysis provides an overview of the current state of the field, as analyzed by leading researchers. An invaluable resource for planning and conducting research in this area, the book conveys a unified view of potential directions for further industrial development. It offers an in-depth treatment of the latest perspectives on processing, compression, and analysis of digital image sequences. Research involving digital image sequences remains extremely active. The advent of economical sequence acquisition, storage, and display devices, together with the availability of computing power, opens new areas of opportunity. This volume delivers the background necessary to understand the strengths and weaknesses of current techniques and the directions that consumer and technical applications may take over the coming decade.
This two volume set LNCS 10602 and LNCS 10603 constitutes the thoroughly refereed post-conference proceedings of the Third International Conference on Cloud Computing and Security, ICCCS 2017, held in Nanjing, China, in June 2017. The 116 full papers and 11 short papers of these volumes were carefully reviewed and selected from 391 submissions. The papers are organized in topical sections such as: information hiding; cloud computing; IOT applications; information security; multimedia applications; optimization and classification.
"This book brings together various research methodologies and trends in emerging areas of application of computer vision and image processing for those interested in the research developments of this rapidly growing field"--
The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.