Download Free Reconceptualizing Early Mathematics Learning Book in PDF and EPUB Free Download. You can read online Reconceptualizing Early Mathematics Learning and write the review.

This book emanated primarily from concerns that the mathematical capabilities of young children continue to receive inadequate attention in both the research and instructional arenas. Research over many years has revealed that young children have sophisticated mathematical minds and a natural eagerness to engage in a range of mathematical activities. As the chapters in this book attest, current research is showing that young children are developing complex mathematical knowledge and abstract reasoning a good deal earlier than previously thought. A range of studies in prior to school and early school settings indicate that young learners do possess cognitive capacities which, with appropriately designed and implemented learning experiences, can enable forms of reasoning not typically seen in the early years. Although there is a large and coherent body of research on individual content domains such as counting and arithmetic, there have been remarkably few studies that have attempted to describe characteristics of structural development in young students’ mathematics. Collectively, the chapters highlight the importance of providing more exciting, relevant, and challenging 21st century mathematics learning for our young students. The chapters provide a broad scope in their topics and approaches to advancing young children’s mathematical learning. They incorporate studies that highlight the importance of pattern and structure across the curriculum, studies that target particular content such as statistics, early algebra, and beginning number, and studies that consider how technology and other tools can facilitate early mathematical development. Reconceptualising the professional learning of teachers in promoting young children’s mathematics, including a consideration of the role of play, is also addressed.
Early childhood mathematics is vitally important for young children's present and future educational success. Research demonstrates that virtually all young children have the capability to learn and become competent in mathematics. Furthermore, young children enjoy their early informal experiences with mathematics. Unfortunately, many children's potential in mathematics is not fully realized, especially those children who are economically disadvantaged. This is due, in part, to a lack of opportunities to learn mathematics in early childhood settings or through everyday experiences in the home and in their communities. Improvements in early childhood mathematics education can provide young children with the foundation for school success. Relying on a comprehensive review of the research, Mathematics Learning in Early Childhood lays out the critical areas that should be the focus of young children's early mathematics education, explores the extent to which they are currently being incorporated in early childhood settings, and identifies the changes needed to improve the quality of mathematics experiences for young children. This book serves as a call to action to improve the state of early childhood mathematics. It will be especially useful for policy makers and practitioners-those who work directly with children and their families in shaping the policies that affect the education of young children.
This third edition of the Handbook of International Research in Mathematics Education provides a comprehensive overview of the most recent theoretical and practical developments in the field of mathematics education. Authored by an array of internationally recognized scholars and edited by Lyn English and David Kirshner, this collection brings together overviews and advances in mathematics education research spanning established and emerging topics, diverse workplace and school environments, and globally representative research priorities. New perspectives are presented on a range of critical topics including embodied learning, the theory-practice divide, new developments in the early years, educating future mathematics education professors, problem solving in a 21st century curriculum, culture and mathematics learning, complex systems, critical analysis of design-based research, multimodal technologies, and e-textbooks. Comprised of 12 revised and 17 new chapters, this edition extends the Handbook’s original themes for international research in mathematics education and remains in the process a definitive resource for the field.
In this book, 23 contributors offer new insights on key issues in mathematics education in early childhood.
This book provides international perspectives on the use of digital technologies in primary, lower secondary and upper secondary school mathematics. It gathers contributions by the members of three topic study groups from the 13th International Congress on Mathematical Education and covers a range of themes that will appeal to researchers and practitioners alike. The chapters include studies on technologies such as virtual manipulatives, apps, custom-built assessment tools, dynamic geometry, computer algebra systems and communication tools. Chiefly focusing on teaching and learning mathematics, the book also includes two chapters that address the evidence for technologies’ effects on school mathematics. The diverse technologies considered provide a broad overview of the potential that digital solutions hold in connection with teaching and learning. The chapters provide both a snapshot of the status quo of technologies in school mathematics, and outline how they might impact school mathematics ten to twenty years from now.
This compilation focuses on the theory and conceptualisation of statistics and probability in the early years and the development of young children’s (ages 3-10) understanding of data and chance. It provides a comprehensive overview of cutting-edge international research on the development of young learners’ reasoning about data and chance in formal, informal, and non-formal educational contexts. The authors share insights into young children’s statistical and probabilistic reasoning and provide early childhood educators and researchers with a wealth of illustrative examples, suggestions, and practical strategies on how to address the challenges arising from the introduction of statistical and probabilistic concepts in pre-school and school curricula. This collection will inform practices in research and teaching by providing a detailed account of current best practices, challenges, and issues, and of future trends and directions in early statistical and probabilistic learning worldwide. Further, it will contribute to future research and theory building by addressing theoretical, epistemological, and methodological considerations regarding the design of probability and statistics learning environments for young children.
Bringing together a diverse cohort of experts, STEM in Early Childhood Education explores the ways STEM can be integrated into early childhood curricula, highlighting recent research and innovations in the field, and implications for both practice and policy. Based on the argument that high-quality STEM education needs to start early, this book emphasizes that early childhood education must include science, technology, engineering, and mathematics in developmentally appropriate ways based on the latest research and theories. Experienced chapter authors address the theoretical underpinnings of teaching STEM in the early years, while contextualizing these ideas for the real world using illustrative examples from the classroom. This cutting-edge collection also looks beyond the classroom to how STEM learning can be facilitated in museums, nature-based learning outdoors, and after-school programs. STEM in Early Childhood Education is an excellent resource for aspiring and veteran educators alike, exploring the latest research, providing inspiration, and advancing best practices for teaching STEM in the early years.
The tenth edition of the four-yearly review of mathematics education research in Australasia, compiled by the Mathematics Education Research Group of Australasia (MERGA), critically reviews research in mathematics education in the four years from 2016 to 2019. Its goals are to provide a reference guide for researchers, and to promote further quality research in Australasia.
This twenty-third ICMI Study addresses for the first time mathematics teaching and learning in the primary school (and pre-school) setting, while also taking international perspectives, socio-cultural diversity and institutional constraints into account. One of the main challenges of designing the first ICMI primary school study of this kind is the complex nature of mathematics at the early level. Accordingly, a focus area that is central to the discussion was chosen, together with a number of related questions. The broad area of Whole Number Arithmetic (WNA), including operations and relations and arithmetic word problems, forms the core content of all primary mathematics curricula. The study of this core content area is often regarded as foundational for later mathematics learning. However, the principles and main goals of instruction on the foundational concepts and skills in WNA are far from universally agreed upon, and practice varies substantially from country to country. As such, this study presents a meta-level analysis and synthesis of what is currently known about WNA, providing a useful base from which to gauge gaps and shortcomings, as well as an opportunity to learn from the practices of different countries and contexts.
If you were to peer into a primary school classroom somewhere across Australia and New Zealand, you would be forgiven for thinking that science, technology, engineering and mathematics (STEM) education is synonymous with coding and digital technologies. However, while these aspects are important, technology alone does not reflect the broad learning opportunities afforded by STEM. In countering this narrow approach, STEM Education in Primary Classrooms offers a platform for research that innovates, excites and challenges the status quo. It provides educators with innovative and up-to-date research into how to meaningfully and authentically embed STEM into existing classroom practices. It incorporates accurate explanations of STEM as an integrated approach to solving real-world problems, including social issues, along with case studies and stories to bring practice to life in evidence-informed ways. This book showcases the impact of a broader approach to STEM in the primary classroom through Australian-based and New Zealand-based research that will challenge current teaching practices. Thus, this book will be of interest to pre- and in-service primary school teachers, along with researchers and postgraduate students in the STEM education field.