Download Free Reciprocity Evolution And Decision Games In Network And Data Science Book in PDF and EPUB Free Download. You can read online Reciprocity Evolution And Decision Games In Network And Data Science and write the review.

Learn how to analyse and manage evolutionary and sequential user behaviours in modern networks, and how to optimize network performance by using indirect reciprocity, evolutionary games, and sequential decision making. Understand the latest theory without the need to go through the details of traditional game theory. With practical management tools to regulate user behaviour, and simulations and experiments with real data sets, this is an ideal tool for graduate students and researchers working in networking, communications, and signal processing.
A unique treatment of evolutionary games, indirect reciprocity, sequential decision making, and application to wireless and social networks.
A famed political scientist's classic argument for a more cooperative world We assume that, in a world ruled by natural selection, selfishness pays. So why cooperate? In The Evolution of Cooperation, political scientist Robert Axelrod seeks to answer this question. In 1980, he organized the famed Computer Prisoners Dilemma Tournament, which sought to find the optimal strategy for survival in a particular game. Over and over, the simplest strategy, a cooperative program called Tit for Tat, shut out the competition. In other words, cooperation, not unfettered competition, turns out to be our best chance for survival. A vital book for leaders and decision makers, The Evolution of Cooperation reveals how cooperative principles help us think better about everything from military strategy, to political elections, to family dynamics.
​This book both summarizes the basic theory of evolutionary games and explains their developing applications, giving special attention to the 2-player, 2-strategy game. This game, usually termed a "2×2 game” in the jargon, has been deemed most important because it makes it possible to posit an archetype framework that can be extended to various applications for engineering, the social sciences, and even pure science fields spanning theoretical biology, physics, economics, politics, and information science. The 2×2 game is in fact one of the hottest issues in the field of statistical physics. The book first shows how the fundamental theory of the 2×2 game, based on so-called replicator dynamics, highlights its potential relation with nonlinear dynamical systems. This analytical approach implies that there is a gap between theoretical and reality-based prognoses observed in social systems of humans as well as in those of animal species. The book explains that this perceived gap is the result of an underlying reciprocity mechanism called social viscosity. As a second major point, the book puts a sharp focus on network reciprocity, one of the five fundamental mechanisms for adding social viscosity to a system and one that has been a great concern for study by statistical physicists in the past decade. The book explains how network reciprocity works for emerging cooperation, and readers can clearly understand the existence of substantial mechanics when the term "network reciprocity" is used. In the latter part of the book, readers will find several interesting examples in which evolutionary game theory is applied. One such example is traffic flow analysis. Traffic flow is one of the subjects that fluid dynamics can deal with, although flowing objects do not comprise a pure fluid but, rather, are a set of many particles. Applying the framework of evolutionary games to realistic traffic flows, the book reveals that social dilemma structures lie behind traffic flow.
Every form of behaviour is shaped by trial and error. Such stepwise adaptation can occur through individual learning or through natural selection, the basis of evolution. Since the work of Maynard Smith and others, it has been realised how game theory can model this process. Evolutionary game theory replaces the static solutions of classical game theory by a dynamical approach centred not on the concept of rational players but on the population dynamics of behavioural programmes. In this book the authors investigate the nonlinear dynamics of the self-regulation of social and economic behaviour, and of the closely related interactions between species in ecological communities. Replicator equations describe how successful strategies spread and thereby create new conditions which can alter the basis of their success, i.e. to enable us to understand the strategic and genetic foundations of the endless chronicle of invasions and extinctions which punctuate evolution. In short, evolutionary game theory describes when to escalate a conflict, how to elicit cooperation, why to expect a balance of the sexes, and how to understand natural selection in mathematical terms.
This substantial volume has two principal objectives. First it provides an overview of the statistical foundations of Simulation-based inference. This includes the summary and synthesis of the many concepts and results extant in the theoretical literature, the different classes of problems and estimators, the asymptotic properties of these estimators, as well as descriptions of the different simulators in use. Second, the volume provides empirical and operational examples of SBI methods. Often what is missing, even in existing applied papers, are operational issues. Which simulator works best for which problem and why? This volume will explicitly address the important numerical and computational issues in SBI which are not covered comprehensively in the existing literature. Examples of such issues are: comparisons with existing tractable methods, number of replications needed for robust results, choice of instruments, simulation noise and bias as well as efficiency loss in practice.
Introduces current evolutionary game theory--where ideas from evolutionary biology and rationalistic economics meet--emphasizing the links between static and dynamic approaches and noncooperative game theory. This text introduces current evolutionary game theory--where ideas from evolutionary biology and rationalistic economics meet--emphasizing the links between static and dynamic approaches and noncooperative game theory. Much of the text is devoted to the key concepts of evolutionary stability and replicator dynamics. The former highlights the role of mutations and the latter the mechanisms of selection. Moreover, set-valued static and dynamic stability concepts, as well as processes of social evolution, are discussed. Separate background chapters are devoted to noncooperative game theory and the theory of ordinary differential equations. There are examples throughout as well as individual chapter summaries. Because evolutionary game theory is a fast-moving field that is itself branching out and rapidly evolving, Jörgen Weibull has judiciously focused on clarifying and explaining core elements of the theory in an up-to-date, comprehensive, and self-contained treatment. The result is a text for second-year graduate students in economic theory, other social sciences, and evolutionary biology. The book goes beyond filling the gap between texts by Maynard-Smith and Hofbauer and Sigmund that are currently being used in the field. Evolutionary Game Theory will also serve as an introduction for those embarking on research in this area as well as a reference for those already familiar with the field. Weibull provides an overview of the developments that have taken place in this branch of game theory, discusses the mathematical tools needed to understand the area, describes both the motivation and intuition for the concepts involved, and explains why and how it is relevant to economics.
This open access book provides a theoretical framework and case studies on decision science for regional sustainability by integrating the natural and social sciences. The cases discussed include solution-oriented transdisciplinary studies on the environment, disasters, health, governance and human cooperation. Based on these case studies and comprehensive reviews of relevant works, including lessons learned from past failures for predictable surprises and successes in adaptive co-management, the book provides the reader with new perspectives on how we can co-design collaborative projects with various conflicts of interest and how we can transform our society for a sustainable future. The book makes a valuable contribution to the global research initiative Future Earth, promoting transdisciplinary studies to bridge the gap between science and society in knowledge generation processes and supporting efforts to achieve the UN’s Sustainable Development Goals (SDGs). Compared to other publications on transdisciplinary studies, this book is unique in that evolutionary biology is used as an integrator for various areas related to human decision-making, and approaches social changes as processes of adaptive learning and evolution. Given its scope, the book is highly recommended to all readers seeking an integrated overview of human decision-making in the context of social transformation.
Enables engineers and researchers to understand the fundamentals and applications of device-to-device communications and its optimization in wireless networking.
Are all film stars linked to Kevin Bacon? Why do the stock markets rise and fall sharply on the strength of a vague rumour? How does gossip spread so quickly? Are we all related through six degrees of separation? There is a growing awareness of the complex networks that pervade modern society. We see them in the rapid growth of the internet, the ease of global communication, the swift spread of news and information, and in the way epidemics and financial crises develop with startling speed and intensity. This introductory book on the new science of networks takes an interdisciplinary approach, using economics, sociology, computing, information science and applied mathematics to address fundamental questions about the links that connect us, and the ways that our decisions can have consequences for others.