Download Free Receptor Methods For Source Apportionment Book in PDF and EPUB Free Download. You can read online Receptor Methods For Source Apportionment and write the review.

This book presents the background and application of receptor models for the source identification and quantitative mass apportionment of airborne pollutants. Over the past decade, receptor models have become an accepted part of the process for developing effective and efficient air quality management plans. Information is provided on the ambient and source sampling and chemical analysis needed to provide the input data for receptor models. Commonly used models are described with examples so that the air quality specialist can see how these models are applied. Recent advances in several areas of the field are presented as well as the perspective of both U.S. Federal and State level air quality managers on how these models fit into the development of a management plan.The aim of the book is to provide a practical guide to persons who may be given the task of implementing receptor modeling as a part of some air quality management problem. The intention of all the chapter authors is to furnish both the basic information needed to begin doing receptor modeling as well as some insight into some of the problems related to the use of these models. These tools like any others used in solving complex technological problems are not a panacea, but do represent powerful aids in data analysis that can lead to insights as to how an airshed functions and thus, to effective and efficient air quality management strategies.
Air Quality and Ecological Impacts reviews the characterization of air quality as it pertains to specific emission sources and their environmental effect. Since emissions from multiple sources impact the same location, a multidisciplinary approach is needed to relate atmospheric processes to terrestrial vegetation. As global industrial expansions continue, air quality is no longer governed by isolated point sources (e.g., a single coal-fired power plant), but by source clusters or complexes. To address these issues, atmospheric receptor models have been developed and are continually being improved. The benefits of any air quality control measures based on receptor modeling must be verified by assessing changes or bettering in environmental impacts. Until now, such an approach has not been well integrated and practiced. This book provides the needed concepts and methods in conducting the studies to establish cause-and-effect relationships under ambient conditions, which is valuable to policy makers both in industrialized and developing nations. - Offers approaches for identifying the emissions components from specific air pollution sources - Details methods for using pollutant accumulation in plants for ecological effects assessment - Establishes cause (air quality) and effect (plant responses) relationships under ambient conditions
Test laboratories, Testing organizations, Laboratory accreditation, Laboratory testing, Statistical methods of analysis, Statistical quality control, Measurement characteristics, Performance testing
"The combination of scientific and institutional integrity represented by this book is unusual. It should be a model for future endeavors to help quantify environmental risk as a basis for good decisionmaking." â€"William D. Ruckelshaus, from the foreword. This volume, prepared under the auspices of the Health Effects Institute, an independent research organization created and funded jointly by the Environmental Protection Agency and the automobile industry, brings together experts on atmospheric exposure and on the biological effects of toxic substances to examine what is knownâ€"and not knownâ€"about the human health risks of automotive emissions.
Current developments in air pollution modeling are explored as a series of contributions from researchers at the forefront of their field. This newest contribution on air pollution modeling and its application is focused on local, urban, regional and intercontinental modeling; emission modeling and processing; data assimilation and air quality forecasting; model assessment and evaluation; atmospheric aerosols. Additionally, this work also examines the relationship between air quality and human health and the effects of climate change on air quality. This work is a collection of selected papers presented at the 36th International Technical Meeting on Air Pollution Modeling and its Application, held in Ottawa, Canada, May 14-18, 2018. The book is intended as reference material for students and professors interested in air pollution modeling at the graduate level as well as researchers and professionals involved in developing and utilizing air pollution models.
Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 200. Trajectory-based (“Lagrangian”) atmospheric transport and dispersion modeling has gained in popularity and sophistication over the previous several decades. It is common practice now for researchers around the world to apply Lagrangian models to a wide spectrum of issues. Lagrangian Modeling of the Atmosphere is a comprehensive volume that includes sections on Lagrangian modeling theory, model applications, and tests against observations. Published by the American Geophysical Union as part of the Geophysical Monograph Series. Comprehensive coverage of trajectory-based atmospheric dispersion modeling Important overview of a widely used modeling tool Sections look at modeling theory, application of models, and tests against observations
The Superfund program of the US Environmental Protection Agency (EPA) was created in the 1980s to address human-health and environmental risks posed by abandoned or uncontrolled hazardous-waste sites. Identification of Superfund sites and their remediation is an expensive multistep process. As part of this process, EPA attempts to identify parties that are responsible for the contamination and thus financially responsible for remediation. Identification of potentially responsible parties is complicated because Superfund sites can have a long history of use and involve contaminants that can have many sources. Such is often the case for mining sites that involve metal contamination; metals occur naturally in the environment, they can be contaminants in the wastes generated at or released from the sites, and they can be used in consumer products, which can degrade and release the metals back to the environment. This report examines the extent to which various sources contribute to environmental lead contamination at Superfund sites that are near lead-mining areas and focuses on sources that contribute to lead contamination at sites near the Southeast Missouri Lead Mining District. It recommends potential improvements in approaches used for assessing sources of lead contamination at or near Superfund sites.
Recent advances in air pollution monitoring and modeling capabilities have made it possible to show that air pollution can be transported long distances and that adverse impacts of emitted pollutants cannot be confined to one country or even one continent. Pollutants from traffic, cooking stoves, and factories emitted half a world away can make the air we inhale today more hazardous for our health. The relative importance of this "imported" pollution is likely to increase, as emissions in developing countries grow, and air quality standards in industrial countries are tightened. Global Sources of Local Pollution examines the impact of the long-range transport of four key air pollutants (ozone, particulate matter, mercury, and persistent organic pollutants) on air quality and pollutant deposition in the United States. It also explores the environmental impacts of U.S. emissions on other parts of the world. The book recommends that the United States work with the international community to develop an integrated system for determining pollution sources and impacts and to design effective response strategies. This book will be useful to international, federal, state, and local policy makers responsible for understanding and managing air pollution and its impacts on human health and well-being.