Download Free Recent Trends In Engineering Design Book in PDF and EPUB Free Download. You can read online Recent Trends In Engineering Design and write the review.

This book presents the select proceedings of the 3rd International Conference on Computational and Experimental Methods in Mechanical Engineering (ICCEMME 2020). The book discusses the recent researches and concrete findings in the field of mechanical design and automation with its allied branches. Various topics covered in this book include modeling and simulation, application of modelling to complex real-world systems, application of machine or deep learning in mechanical problems, artificial intelligence, vehicle design, robotics, vehicle dynamics and control, biomechanics, and vibration-related problems. Given its content, the book will be useful for beginners, researchers, and professionals interested in the field of mechanical engineering.
This book presents select proceedings of the International Conference on Advances in Sustainable Technologies (ICAST 2020), organized by Lovely Professional University, Punjab, India. The topics covered include computer aided design (CAD), computer assisted manufacturing (CAM), computer integrated manufacturing (CIM), computer aided engineering (CAE) and product design, dynamics of control structures and systems, solid mechanics: differential and dynamical systems, modelling and simulation. The book also discusses various modern age design tools including finite element analysis, modelling, analysis and simulation of manufacturing processes, process design, automation, mechatronics, robotics and assembly, etc. The book will be useful for beginners, researchers, and professionals interested in the field of sustainable design practices.
This book constitutes the proceedings of the First International Conference on Emerging Trends in Engineering (ICETE), held at University College of Engineering and organised by the Alumni Association, University College of Engineering, Osmania University, in Hyderabad, India on 22–23 March 2019. The proceedings of the ICETE are published in three volumes, covering seven areas: Biomedical, Civil, Computer Science, Electrical & Electronics, Electronics & Communication, Mechanical, and Mining Engineering. The 215 peer-reviewed papers from around the globe present the latest state-of-the-art research, and are useful to postgraduate students, researchers, academics and industry engineers working in the respective fields. This volume presents state-of-the-art, technical contributions in the areas of civil, mechanical and mining engineering, discussing sustainable developments in fields such as water resource engineering, structural engineering, geotechnical and transportation engineering, mining engineering, production and industrial engineering, thermal engineering, design engineering, and production engineering.
The book is a multidisciplinary space and serves as a platform to share and learn about the frontier knowledge between different areas related to “Recent trends in sustainable engineering.” Sustainable engineering promotes the responsible use of resources and materials involved in the different manufacturing processes or the execution stages of a service. An interdisciplinary approach is required in all aspects of engineering. In this sense, engineers, researchers, and the academic community will play a fundamental role in developing new technologies that respect the environment, still, at the same time, that considers social and economic factors.
"This book provides a detailed view on the current issues, trends, challenges, and future perspectives on product design and development, an area of growing interest and increasingly recognized importance for industrial competitiveness and economic growth"--Provided by publisher.
As the most influential activity for social and economic development of individuals and societies, education is a powerful means of shaping the future. The emergence of physical and digital technologies requires an overhaul that would affect not only the way engineering is approached but also the way education is delivered and designed. Therefore, designing and developing curricula focusing on the competencies and abilities of new generation engineers will be a necessity for sustainable success. Engineering Education Trends in the Digital Era is a critical scholarly resource that examines more digitized ways of designing and delivering learning and teaching processes and discusses and acts upon developing innovative engineering education within global, societal, economic, and environmental contexts. Highlighting a wide range of topics such as academic integrity, gamification, and professional development, this book is essential for teachers, researchers, educational policymakers, curriculum designers, educational software developers, administrators, and academicians.
This book provides engineers and students with a general framework focusing on the processes of designing new engineering products. The procedures covered by the framework lead the reader to the best trade-offs to ensure maximum satisfaction of the customer’s needs, meeting the lowest cost expectations, ensuring the lowest environmental impact and maximising profits and best positioning in the marketplace. Chapters discuss the engineering tools that are compatible with these goals and sustainable activity. The design process is defined in terms of operators acting over the information space The information content is defined as a difference of entropies Creation and destruction of entropy are defined as procedures of the design process
The present book is based on the research papers presented in the International Conference on Emerging Trends in Science, Engineering and Technology 2012, held at Tiruchirapalli, India. The papers presented bridges the gap between science, engineering and technology. This book covers a variety of topics, including mechanical, production, aeronautical, material science, energy, civil and environmental energy, scientific management, etc. The prime objective of the book is to fully integrate the scientific contributions from academicians, industrialists and research scholars.
Emerging Trends in Medical Plastic Engineering and Manufacturing gives engineers and materials scientists working in the field detailed insights into upcoming technologies in medical polymers. While plastic manufacturing combines the possibility of mass production and wide design variability, there are still opportunities within the plastic engineering field which have not been fully adopted in the medical industry. In addition, there are numerous additional challenges related to the development of products for this industry, such as ensuring tolerance to disinfection, biocompatibility, selecting compliant additives for processing, and more. This book enables product designers, polymer processing engineers, and manufacturing engineers to take advantage of the numerous upcoming developments in medical plastics, such as autoregulated volume-correction to achieve zero defect production or the development of ‘intelligent’ single use plastic products, and methods for sterile manufacturing which reduce the need for subsequent sterilization processes. Finally, as medical devices get smaller, the book discusses the challenges posed by miniaturization for injection molders, how to respond to these challenges, and the rapidly advancing prototyping technologies. Provides a roadmap to the emerging technologies for polymers in the medical device industry, including coverage of ‘intelligent’ single use products, personalized medical devices, and the integration of manufacturing steps to improve workflows Helps engineers in the biomedical and medical devices industries to navigate and anticipate the special requirements of this field with relation to biocompatibility, sterilization methods, and government regulations Presents tactics readers can use to take advantage of rapid prototyping technologies, such as 3D printing, to reduce defects in production and develop products that enable entirely new treatment possibilities
Initially, computer systems performance analyses were carried out primarily because of limited resources. Due to ever increasing functional complexity of computational systems and user requirements, performance engineering continues to play a major role in software development. This book assesses the state of the art in performance engineering. Besides revised chapters drawn from two workshops on performance engineering held in 2000, additional chapters were solicited in order to provide complete coverage of all relevant aspects. The first part is devoted to the relation between software engineering and performance engineering; the second part focuses on the use of models, measures, and tools; finally, case studies with regard to concrete technologies are presented. Researchers, professional software engineers, and advanced students interested in performance analysis will find this book an indispensable source of information and reference.