Download Free Recent Trends In Computational Omics Concepts And Methodology Book in PDF and EPUB Free Download. You can read online Recent Trends In Computational Omics Concepts And Methodology and write the review.

Integrative Omics: Concepts, Methodology and Applications provides a holistic and integrated view of defining and applying network approaches, integrative tools, and methods to solve problems for the rationalization of genotype to phenotype relationships. The reference includes a range of chapters in a systemic 'step by step' manner, which begins with the basic concepts from Omic to Multi Integrative Omics approaches, followed by their full range of approaches, applications, emerging trends, and future trends. All key areas of Omics are covered including biological databases, sequence alignment, pharmacogenomics, nutrigenomics and microbial omics, integrated omics for Food Science and Identification of genes associated with disease, clinical data integration and data warehousing, translational omics as well as omics technology policy and society research. Integrative Omics: Concepts, Methodology and Applications highlights the recent concepts, methodologies, advancements in technologies and is also well-suited for researchers from both academic and industry background, undergraduate and graduate students who are mainly working in the area of computational systems biology, integrative omics and translational science. The book bridges the gap between biological sciences, physical sciences, computer science, statistics, data science, information technology and mathematics by presenting content specifically dedicated to mathematical models of biological systems. - Provides a holistic, integrated view of a defining and applying network approach, integrative tools, and methods to solve problems for rationalization of genotype to phenotype relationships - Offers an interdisciplinary approach to Databases, data analytics techniques, biological tools, network construction, analysis, modeling, prediction and simulation of biological systems leading to 'translational research', i.e., drug discovery, drug target prediction, and precision medicine - Covers worldwide methods, concepts, databases, and tools used in the construction of integrated pathways
The last decade has witnessed various technological advances in life sciences, especially high throughput technologies. These technologies provide a way to perform parallel scientific studies in a very short period of time with low cost. High throughput techniques, mainly, next generation sequencing, microarray and mass spectrometry, have strengthened the omics vision in the last decades (study of complete system) and now resulted in well-developed branches of omics i.e., genomics, transcriptomics, proteomics and metabolomics, which deal with almost every level of central dogma of life. Practice of high throughput techniques throughout the world with different aims and objectives resulted in a voluminous data, which required computational applications, i.e., database, algorithm and software to store, process and get biological interpretation from primary raw data. Researchers from different fields are looking to analyze these raw data for different purposes, but lacking of proper information and knowledge in proper documented form creates different kinds of hurdles and raises the challenges. This book contains thirteen chapters that deal with different computational biology/bioinformatics resources and concepts which are already in practice by the scientific community or can be utilized to handle various aspects of different classes of omics data. It includes different computational concepts, algorithm, resources and recent trends belonging to the four major branches of omics (i.e., genomics, transcriptomics, proteomics and metabolomics), including integrative omics. It will help all scholars who are working in any branch of computational omics and bioinformatics field as well as those who would like to perform research at a systemic biology through computational approaches.
Bioinformatics: Methods and Applications provides a thorough and detailed description of principles, methods, and applications of bioinformatics in different areas of life sciences. It presents a compendium of many important topics of current advanced research and basic principles/approaches easily applicable to diverse research settings. The content encompasses topics such as biological databases, sequence analysis, genome assembly, RNA sequence data analysis, drug design, and structural and functional analysis of proteins. In addition, it discusses computational approaches for vaccine design, systems biology and big data analysis, and machine learning in bioinformatics.It is a valuable source for bioinformaticians, computer biologists, and members of biomedical field who needs to learn bioinformatics approaches to apply to their research and lab activities. - Covers basic and more advanced developments of bioinformatics with a diverse and interdisciplinary approach to fulfill the needs of readers from different backgrounds - Explains in a practical way how to decode complex biological problems using computational approaches and resources - Brings case studies, real-world examples and several protocols to guide the readers with a problem-solving approach
Plants are an indispensable part of human and animal lives for nutrition and health. But pests, diseases and abiotic stress adversely affect crop yield, which ultimately places significant pressure on society to provide food to an increasing population. Moreover, it also encourages increased chemical/pesticide usage on crops, which we see in the biomagnification of toxic and hazardous compounds polluting water bodies, soil and the environment. This condition will continue to worsen in the future due to the resistance-acquiring ability of pathogens against plant defense and chemical treatments. In addition, environmental disturbances and consumer health issues are being reported more promptly than before due to intensive use of pesticides in food production. Plant diseases affect our daily lives, as the use of insecticides and pesticides has become part of our food chain. As a result, precise disease diagnosis and management is crucial in order to avoid huge losses in plant production and related commodities. Accurate detection, precise diagnosis and proper management can play a significant role in keeping plants free from pathogens. In this book, scientists, researchers and scholars share their research knowledge, offering a valuable resource for understanding plant diseases, pathogen interaction and responses to stress through an omics perspective, contributing to further advancements in the field Diseases in plants may be caused by various factors, such as viruses, bacteria, fungi and abiotic stress. Disease causes low crop yield, production of poor-quality fruits and grains, and deficiency of nutrients, which have a direct impact on human and animal health. A genomics-based approach can be applied to disease diagnosis; disease outbreak; evolution of plant and pathogen genome for disease outbreak in relation to climate change; and development of long-term strategies for plant health and defense. This book presents an overview of omics technologies and approaches used to understand: 1) the relation between plants and their environment in terms of diseases 2) responses to abiotic stress 3) the genomics of plant–pathogen interaction 4) herbicide-resistance mechanisms 5) the epigenetics of plant–pathogen interaction 6) gene regulation during abiotic stress response 7) the oxidative stress response
Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.
Computational Epigenetics and Diseases, written by leading scientists in this evolving field, provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases. In particular, the major computational tools, databases, and strategies for computational epigenetics analysis, for example, DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA, are summarized, in the context of human diseases. This book discusses bioinformatics methods for epigenetic analysis specifically applied to human conditions such as aging, atherosclerosis, diabetes mellitus, schizophrenia, bipolar disorder, Alzheimer disease, Parkinson disease, liver and autoimmune disorders, and reproductive and respiratory diseases. Additionally, different organ cancers, such as breast, lung, and colon, are discussed. This book is a valuable source for graduate students and researchers in genetics and bioinformatics, and several biomedical field members interested in applying computational epigenetics in their research. - Provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases - Summarizes the major computational tools, databases, and strategies for computational epigenetics analysis, such as DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA - Covers the major milestones and future directions of computational epigenetics in various kinds of human diseases such as aging, atherosclerosis, diabetes, heart disease, neurological disorders, cancers, blood disorders, liver diseases, reproductive diseases, respiratory diseases, autoimmune diseases, human imprinting disorders, and infectious diseases
Emerging Innovative Trends in the Application of Biological Processes for Industrial Wastewater Treatment discusses new and emerging innovative trends in the application of biological processes in industrial wastewater treatment. It also includes the fate of chemicals produced after the treatment process both at the laboratory scale and at the industrial scale. This book explores the unique biological aspects of the wastewater treatment process and highlights the advantages they provide for engineering applications in the industries. Each chapter covers a different biological-based approach and examines the basic principles, practical applications, recent breakthroughs, and associated limitations. Emerging Innovative Trends in the Application of Biological Processes for Industrial Wastewater Treatment also provides in-depth knowledge on the biological process for application in wastewater research which presents an array of cutting-edge wastewater treatment research and thereafter its applications in treatment, remediation, sensing, and pollution prevention processes which has a significant impact on maintaining the long-term quality, availability, and viability of water. - Serves as an easy-to-use guider manual for all the enlisted smart techniques - Describes and discusses the emerging futuristic technologies in industrial pollutants removal from wastewater - Covers advancements in biological treatments, advanced oxidation techniques, and membrane technology to remove water pollutants
Protein Interaction Networks, Volume 131 in the Advances in Protein Chemistry and Structural Biology series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Advances in Protein Chemistry and Structural Biology series - Includes the latest information on protein design and structure