Download Free Recent Trends In Biofertilizers Book in PDF and EPUB Free Download. You can read online Recent Trends In Biofertilizers and write the review.

Offers insights into biofertilizer technology, biotechnology-based biofertilizers, and other recent developments. Discussion of the tremendous advances made in the last decade in biofertilizer technology through development of biotic and abiotic stress tolerant microbial strains is one of the highlights of this book.
The rapid increase in microbial resources along with the development of biotechnological methods has revolutionized the field of microbial biotechnology. Genome characterization methods and metagenomic approaches further illustrate the role of microorganisms in various fields of research. Recent Advancement in Microbial Biotechnology: Agricultural and Industrial Approach provides an overview on the recent application of the microorganisms in agricultural and industrial improvements. The purpose of this book is to integrate all these diverse areas of research in a common platform. Recent advancement in Microbial Biotechnology targets researchers from both academia and industry, professors and graduate students working in molecular biology, microbiology and biotechnology. - Gives insight in the exploration of microbial functional diversity in different systems - Highlights important microbes and their role in enhancing agricultural productivity - Provides understanding to the basics with advance information of microbial biotechnology - Explores the importance of microbial genomes studies in agricultural and industrial applications
Great attention has been paid to reduce the use of conventional chemical fertilizers harming living beings through food chain supplements from the soil environment. Therefore, it is necessary to develop alternative sustainable fertilizers to enhance soil sustainability and agriculture productivity. Biofertilizers are the substance that contains microorganisms (bacteria, algae, and fungi) living or latent cells that can enrich the soil quality with nitrogen, phosphorous, potassium, organic matter, etc. They are a cost-effective, biodegradable, and renewable source of plant nutrients/supplements to improve the soil-health properties. Biofertilizers emerge as an attractive alternative to chemical fertilizers, and as a promising cost-effective technology for eco-friendly agriculture and a sustainable environment that holds microorganisms which enhance the soil nutrients' solubility leading a raise in its fertility, stimulates crop growth and healthy food safety. This book provides in-depth knowledge about history and fundamentals to advances biofertilizers, including latest reviews, challenges, and future perspectives. It covers fabrication approaches, and various types of biofertilizers and their applications in agriculture, environment, forestry and industrial sectors. Also, organic farming, quality control, quality assurance, food safety and case-studies of biofertilizers are briefly discussed. Biofertilizers' physical properties, affecting factors, impact, and industry profiles in the market are well addressed. This book is an essential guide for farmers, agrochemists, environmental engineers, scientists, students, and faculty who would like to understand the science behind the sustainable fertilizers, soil chemistry and agroecology.
This book provides a comprehensive overview of the benefits of biofertilizers as an alternative to chemical fertilizers and pesticides. Agricultural production has increased massively over the last century due to increased use of chemical fertilizers and pesticides, but these gains have come at a price. The chemicals are not only expensive; they also reduce microbial activity in agricultural soils and accumulate in the food chain, with potentially harmful effects for humans. Accordingly, it is high time to explore alternatives and to find solutions to overcome our increasing dependence on these chemicals. Biofertilizers, which consist of plant remains, organic matter and microorganisms, might offer an alternative. They are natural, organic, biodegradable, eco-friendly and cost-effective. Further, the microbes present in the biofertilizers are important, because they produce nutrients required for plant growth (e.g., nitrogen, phosphorus, potassium), as well as substances essential for plant growth and development (e.g., auxins and cytokinins). Biofertilizers also improve the physical properties, fertility and productivity of soil, reducing the need for chemical fertilizers while maintaining high crop yield. This makes biofertilizers a powerful tool for sustainable agriculture and a sustainable environment. The book covers the latest research on biofertilizers, ranging from beneficial fungal, bacterial and algal inoculants; to microbes for bioremediation, wastewater treatment; and recycling of biodegradable municipal, agricultural and industrial waste; as well as biocontrol agents and bio-pesticides. As such, it offers a valuable resource for researchers, academics and students in the broad fields of microbiology and agriculture.
HANDBOOK of BIOMASS VALORIZATION for INDUSTRIAL APPLICATIONS The handbook provides a comprehensive view of cutting-edge research on biomass valorization, from advanced fabrication methodologies through useful derived materials, to current and potential application sectors. Industrial sectors, such as food, textiles, petrochemicals and pharmaceuticals, generate massive amounts of waste each year, the disposal of which has become a major issue worldwide. As a result, implementing a circular economy that employs sustainable practices in waste management is critical for any industry. Moreover, fossil fuels, which are the primary sources of fuel in the transportation sector, are also being rapidly depleted at an alarming rate. Therefore, to combat these global issues without increasing our carbon footprint, we must look for renewable resources to produce chemicals and biomaterials. In that context, agricultural waste materials are gaining popularity as cost-effective and abundantly available alternatives to fossil resources for the production of a variety of value-added products, including renewable fuels, fuel components, and fuel additives. Handbook of Biomass Valorization for Industrial Applications investigates current and emerging feedstocks, as well as provides in-depth technical information on advanced catalytic processes and technologies that enable the development of all possible alternative energy sources. The 22 chapters of this book comprehensively cover the valorization of agricultural wastes and their various uses in value-added applications like energy, biofuels, fertilizers, and wastewater treatment. Audience The book is intended for a very broad audience working in the fields of materials sciences, chemical engineering, nanotechnology, energy, environment, chemistry, etc. This book will be an invaluable reference source for the libraries in universities and industrial institutions, government and independent institutes, individual research groups, and scientists working in the field of valorization of biomass.
Environmental and Agricultural Microbiology Uniquely reveals the state-of-the-art microbial research/advances in the environment and agriculture fields Environmental and Agricultural Microbiology: Applications for Sustainability is divided into two parts which embody chapters on sustenance and life cycles of microorganisms in various environmental conditions, their dispersal, interactions with other inhabited communities, metabolite production, and reclamation. Though books pertaining to soil & agricultural microbiology/environmental biotechnology are available, there is a dearth of comprehensive literature on the behavior of microorganisms in the environmental and agricultural realm. Part 1 includes bioremediation of agrochemicals by microalgae, detoxification of chromium and other heavy metals by microbial biofilm, microbial biopolymer technology including polyhydroxyalkanoates (PHAs) and polyhydroxybutyrates (PHB), their production, degradability behaviors, and applications. Biosurfactants production and their commercial importance are also systematically represented in this part. Part 2 having 9 chapters, facilitates imperative ideas on approaches for sustainable agriculture through functional soil microbes, next-generation crop improvement strategies via rhizosphere microbiome, production and implementation of liquid biofertilizers, mitigation of methane from livestock, chitinases from microbes, extremozymes, an enzyme from extremophilic microorganism and their relevance in current biotechnology, lithobiontic communities, and their environmental importance, have all been comprehensively elaborated. In the era of sustainable energy production, biofuel and other bioenergy products play a key role, and their production from microbial sources are frontiers for researchers. The final chapter unveils the importance of microbes and their consortia for management of solid waste in amalgamation with biotechnology Audience The book will be read by environmental microbiologists, biotechnologists, chemical and agricultural engineers.
Sharply focused, up-to-date information on microbial biofertilizers—including emerging options such as Piriformospora indica and Matsutake The Handbook of Microbial Biofertilizers provides in-depth coverage of all major microbial biofertilizers (rhizobia, arbuscular mycorrhizal fungi, and cyanobacteriaas well as new and emerging growth promoters (endophytes). It examines the role of microbes in growth promotion, bioprotectors, and bioremidiators, and presents protocols and practical strategies for using microbes in sustainable agriculture. An abundance of helpful charts, tables, and figures make complex information easy to access and understand. In this first-of-its-kind volume, contributors from 11 countries and several continents address important issues surrounding microbial biofertilizers, including: the rhizobium-host-arbuscular mycorrhizal tripartite relationship mycorrhiza as a disease suppresser and stress reducer mycorrhiza helping bacteria the impact of functional groups of soil microorganisms on nutrient turnover PBPRs as biofertilizers and biopesticides the potential of wild-legume rhizobia for use as a biofertilizers the expanding role of blue-green algae in sustainable agriculture the role of microbial fertilizers in sustainable plant production new and emerging endophytes the commercial potential of biofertilizers In this young century, the use of biofertilizers is already growing rapidly. It has been recognized that these environment-friendly bioprotectors, growth boosters, and remediators are essential for soil/plant health. The Handbook of Microbial Biofertilizers is designed to fit the expanding information needs of current and future biotechnologists, microbiologists, botanists, agronomists, environmentalists, and others whose work involves sustained agriculture.
Microbial biotechnology is known as any technological application that uses microbiological systems, microbial organisms or their derivatives, to manufacture or modify products or processes for specific use. Understanding the utilization of microorganisms and microbial biotechnology in improving the quality of life has been recognized at global. Now days, what is urgently required is a searching of new microbes and novel genes for solving some of the major challenges of recent years with particular reference to sustainable agriculture, the environment and human health. Hence, it is realized that a book dealing microbial technology must be made available to meet the critical gap in applied microbiology and microbial technology for students, researchers and technology development professionals. The book covers a broad area which includes microbial concrete production, applications of nanotechnology in food microbiology, microbial technology of biofertilizer, Probiotics for Oral health, microbial surfactants and its potential application, Regulation of circadian rhythm by gut microflora.
This book presents a comprehensive collection of articles illustrating the importance of microbial community structure and function for ecosystem sustainability and environmental reclamation. It addresses a diverse range of topics, including microbial diversity, physiology, genomics, ecosystem function, interaction, metabolism, and the fruitful use of microbial communities for crop productivity and environmental remediation. In addition, the book explores issues ranging from general concepts on the diversity of microorganisms in soil, and ecosystem function to the evolution and taxonomy of soil microbiota, with future prospects. It covers cutting-edge methods in soil microbial ecological studies, rhizosphere microflora, the role of organic matter in plant productivity, biological nitrogen fixation and its genetics, microbial transformation of plant nutrients in soil, plant-growth-promoting rhizobacteria, and organic matter transformation. The book also discusses the application of microbes in biodegradation of xenobiotic contaminants. It covers bio-fertilizers and their role in sustainable agriculture and soil health, biological control of insect pests and plant pathogens, and the latest tools of omics in soil microbiology, i.e. genomics, proteomics, transcriptomics and metabolomics, which offer pioneering approaches to the exploration of microbial structure and function.