Download Free Recent Progress In Polyamine Research Book in PDF and EPUB Free Download. You can read online Recent Progress In Polyamine Research and write the review.

This book contains the scientific contributions presented at an International Symposium held in Sorrento, Italy, in June 1988 under the auspices of the University of Naples, the Italian Society of Biochemistry, and the National Research Council. The modern history of polyamines dates back to 1958 when the Tabors and Rosenthal first described the outlines of their biological synthesis. From then on, and particularly in the last ten years, a veri table explosion of Literature, characterized by thousands of papers, has witnessed the interest of the scientific community toward these molecules. Perhaps the old statement that "polyamines are molecules in search of a function" is no longer true today. A large number of effects exerted by these simple molecules are well known, and in many cases the mechanisms underlying these effects have been elucidated. The first section of the volume is entirely devoted to the enzymology and molecular biology of ornithine decarboxylase. Since its discovery by Gale more than forty years ago, this can be considered among the most widely studied enzymes in biology, and one of the most complex models in enzyme regulation. The mechanism of control of the enzyme activity at the transcriptional, post-transcriptional and post-translational levels, as well as the fine regulation by antizyme, are discussed in detail. The second group of contributions deals wi th AdoMet decarboxylase, propylamine transferase, polyamine oxidase and the other enzymes related to polyamine interconversion and regeneration.
Polyamines are ubiquitous molecules that are involved in a number of important cellular processes. Aberrations in their function or metabolism play a role in diseases such as cancer and parasitic infection. A number of validated drug targets have been identified, including enzymes in the polyamine biosynthetic and catabolic pathways and the S-adenosylmethionine synthetic and salvage pathways. Polyamine Drug Discovery is the first comprehensive volume to cover all aspects of the design and development of potential therapeutics targeting polyamine metabolism. The book details research progress from 1975 to the present date and discusses the design and use of polyamine metabolism inhibitors as therapeutic agents. Various polyamine-containing drugs are described that can be used in chemotherapy, and as treatments for infections including trypanosomiasis, leishmaniasis and malaria. Finally, the roles of polyamine analogues in chemoprevention, polyamine-containing vectors for gene delivery, and the design of polyamine-based epigenetic modulators are detailed. Each chapter addresses a different aspect of polyamine drug discovery and all are written by medicinal and biological chemists with particular expertise in developing agents that modulate polyamine metabolism or function. The book will increase the visibility of polyamine drug discovery among pharmaceutical researchers and provide a valuable reference for everyone working in the field.
A guide to the chemical agents that protect plants from various environmental stressors Protective Chemical Agents in the Amelioration of Plant Abiotic Stress offers a guide to the diverse chemical agents that have the potential to mitigate different forms of abiotic stresses in plants. Edited by two experts on the topic, the book explores the role of novel chemicals and shows how using such unique chemical agents can tackle the oxidative damages caused by environmental stresses. Exogenous application of different chemical agents or chemical priming of seeds presents opportunities for crop stress management. The use of chemical compounds as protective agents has been found to improve plant tolerance significantly in various crop and non-crop species against a range of different individually applied abiotic stresses by regulating the endogenous levels of the protective agents within plants. This important book: Explores the efficacy of various chemical agents to eliminate abiotic stress Offers a groundbreaking look at the topic and reviews the most recent advances in the field Includes information from noted authorities on the subject Promises to benefit agriculture under stress conditions at the ground level Written for researchers, academicians, and scientists, Protective Chemical Agents in the Amelioration of Plant Abiotic Stress details the wide range of protective chemical agents, their applications, and their intricate biochemical and molecular mechanism of action within the plant systems during adverse situations.
Recently, important new findings in the polyamine field and a variety of new experimental systems have revolutionized the study of these ubiquitous cellular components, essential for normal growth and development. In Polyamines: Methods and Protocols, leading researchers contribute an extensive collection of up-to-date laboratory techniques for the further pursuit of polyamine study. The volume delves into vital subjects such as neoplasia studies with animal models and human patients, therapeutic roles for polyamine inhibitors and analogs, polyamine metabolism and oxidative damage, polyamines as regulators of critical ion channels, as well as polyamine transport systems and polyamine-responsive genes. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and expert notes on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Polyamines: Methods and Protocols provides a key resource for all scientists pursuing the study of this dynamic and significant aspect of cellular biology.
While working in the laboratory of Professor Dr. Jacob Reinert at the Freie Universitat Berlin (1974-1976), I had the opportunity to become deeply involved in studying the intricacies of the fascinating phenomenon of somatic embryogenesis in plant cells and protoplasts. In numerous stimu lating discussions with Professor Reinert on this subject, I was fully convinced that somatic embryogenesis would become one of the most important areas of study, not only regarding basic and fundamental aspects, but also for its application in crop improvement. During the last decade, we have witnessed tremendous interest and achievements in the use of somatic embryos for the production of synthetic seeds, for micro propagation, genetic transformation, cryopreservation, and conservation of germplasm. The en masse production of somatic embryos in the bioreactors has facilitated some of these studies. Somatic embryos have now been induced in more than 300 plant species belonging to a wide range offamilies. It was therefore felt that a compilation ofliterature/state of the art on this subject was necessary. Thus, two volumes on Somatic Embryo genesis and Synthetic Seed have been compiled, which contain 65 chapters contributed by International experts. Somatic Embryogenesis and Synthetic Seed I comprises 31 chapters, arranged in 3 sections: Section I Commitment of the cell to somatic embryogenesis; early events; anatomy; molecular basis; gene expression; role of polyamines; machine vision analysis of somatic embryos. Section II Applications of somatic embryos; technology of synthetic seed; fluid drilling; micropropagation; genetic transfor mation through somatic embryos; cryopreservation.
Biochemistry and Physiology of Polyamines in Plants provides a comprehensive introduction to commonly used methods in polyamine research and the problems unique to plant studies. Topics discussed include polyamine metabolism in plants, the functions of polyamines in plant growth and development, and an examination of analytical methods for polyamines and enzymes of polyamine metabolism. Agronomists, plant physiologists, and biochemists interested in polyamines in plants will find this book to be a valuable reference resource.
The purpose of this book is to provide the advances in plant in vitro culture as related to perennial fruit crops and medicinal plants. Basic principles and new techniques, now available, are presented in detail. The book will be of use to researchers, teachers in biotechnology and for individuals interested to the commercial application of plant in vitro culture.
Algal Green Chemistry: Recent Progress in Biotechnology presents emerging information on green algal technology for the production of diverse chemicals, metabolites, and other products of commercial value. This book describes and emphasizes the emerging information on green algal technology, with a special emphasis on the production of diverse chemicals, metabolites, and products from algae and cyanobacteria. Topics featured in the book are exceedingly valuable for researchers and scientists in the field of algal green chemistry, with many not covered in current academic studies. It is a unique source of information for scientists, researchers, and biotechnologists who are looking for the development of new technologies in bioremediation, eco-friendly and alternative biofuels, biofertilizers, biogenic biocides, bioplastics, cosmeceuticals, sunscreens, antibiotics, anti-aging, and an array of other biotechnologically important chemicals for human life and their contiguous environment. This book is a great asset for students, researchers, and biotechnologists. - Discusses high-value chemicals from algae and their industrial applications - Explores the potential of algae as a renewable source of bioenergy and biofuels - Considers the potential of algae as feed and super-food - Presents the role of triggers and cues to algal metabolic pathways - Includes developments in the use of algae as bio-filters
Plant hormones play a crucial role in controlling the way in which plants growand develop. Whilemetabolism providesthepowerand buildingblocks for plant life, it is the hormones that regulate the speed of growth of the individual parts and integrate these parts to produce the form that we recognize as a plant. In addition, theyplayacontrolling role inthe processes of reproduction. This book is a description ofthese natural chemicals: how they are synthesizedand metabolized; howthey work; whatwe knowoftheir molecular biology; how we measure them; and a description ofsome ofthe roles they play in regulating plant growth and development. Emphasis has also been placed on the new findings on plant hormones deriving from the expanding use ofmolecular biology as a tool to understand these fascinating regulatory molecules. Even at the present time, when the role of genes in regulating all aspects of growth and development is considered of prime importance, it is still clear that the path of development is nonetheless very much under hormonal control, either via changes in hormone levels in response to changes in gene transcription, or with the hormones themselves as regulators ofgene transcription. This is not a conference proceedings, but a selected collection ofnewly written, integrated, illustrated reviews describing our knowledge of plant hormones, and the experimental work that is the foundation of this knowledge.