Download Free Recent Marine Sediments Book in PDF and EPUB Free Download. You can read online Recent Marine Sediments and write the review.

The processes occurring in surface marine sediments have a profound effect on the local and global cycling of many elements. This graduate text presents the fundamentals of marine sediment geochemistry by examining the complex chemical, biological, and physical processes that contribute to the conversion of these sediments to rock, a process known as early diagenesis. Research over the past three decades has uncovered the fact that the oxidation of organic matter deposited in sediment acts as a causative agent for many early diagenetic changes. Summarizing and discussing these findings and providing a much-needed update to Robert Berner's Early Diagenesis: A Theoretical Approach, David J. Burdige describes the ways to quantify geochemical processes in marine sediment. By doing so, he offers a deeper understanding of the cycling of elements such as carbon, nitrogen, and phosphorus, along with important metals such as iron and manganese. No other book presents such an in-depth look at marine sediment geochemistry. Including the most up-to-date research, a complete survey of the subject, explanatory text, and the most recent mathematical formulations that have contributed to our greater understanding of early diagenesis, Geochemistry of Marine Sediments will interest graduate students of geology, geochemistry, and oceanography, as well as the broader community of earth scientists. It is poised to become the standard text on the subject for years to come.
'Deep-Sea Sediments' focuses on the sedimentary processes operating within the various modern and ancient deep-sea environments. The chapters track the way of sedimentary particles from continental erosion or production in the marine realm, to transport into the deep sea, to final deposition on the sea floor.
Marine sediments are the second largest habitat on earth and yet are poorly understood. This book gives a broad coverage of the central topics in the ecology of soft sediments.
This accessible textbook provides an ideal point of entry into the field, providing basic information on the nature of soft-sediment ecosystems, examples of how and why we research them, the new questions these studies inspire, and the applications that ultimately benefit society.
The present volume is the first in a series of two books dedicated to the paleoceanography of the Late Cenozoic ocean. The need for an updated synthesis on paleoceanographic science is urgent, owing to the huge and very diversified progress made in this domain during the last decade. In addition, no comprehensive monography still exists in this domain. This is quite incomprehensible in view of the contribution of paleoceanographic research to our present understanding of the dynamics of the climate-ocean system. The focus on the Late Cenozoic ocean responds to two constraints. Firstly, most quantitative methods, notably those based on micropaleontological approaches, cannot be used back in time beyond a few million years at most. Secondly, the last few million years, with their strong climate oscillations, show specific high frequency changes of the ocean with a relatively reduced influcence of tectonics. The first volume addresses quantitative methodologies to reconstruct the dynamics of the ocean andthe second, major aspects of the ocean system (thermohaline circulation, carbon cycle, productivity, sea level etc.) and will also present regional synthesis about the paleoceanography of major the oceanic basins. In both cases, the focus is the "open ocean leaving aside nearshore processes that depend too much onlocal conditions. In this first volume, we have gathered up-to-date methodologies for the measurement and quantitative interpretation of tracers and proxies in deep sea sediments that allow reconstruction of a few key past-properties of the ocean( temperature, salinity, sea-ice cover, seasonal gradients, pH, ventilation, oceanic currents, thermohaline circulation, and paleoproductivity). Chapters encompass physical methods (conventional grain-size studies, tomodensitometry, magnetic and mineralogical properties), most current biological proxies (planktic and benthic foraminifers, deep sea corals, diatoms, coccoliths, dinocysts and biomarkers) and key geochemical tracers (trace elements, stable isotopes, radiogenic isotopes, and U-series). Contributors to the book and members of the review panel are among the best scientists in their specialty. They represent major European and North American laboratories and thus provide a priori guarantees to the quality and updat of the entire book. Scientists and graduate students in paleoclimatology, paleoceanography, climate modeling, and undergraduate and graduate students in marine geology represent the target audience. This volume should be of interest for scientists involved in several international programs, such as those linked to the IPCC (IODP – Integrated Ocean Drilling Program; PAGES – Past Global Changes; IMAGES – Marine Global Changes; PMIP: Paleoclimate Intercomparison Project; several IGCP projects etc.), That is, all programs that require access to time series illustrating changes in the climate-ocean system. - Presents updated techniques and methods in paleoceanography - Reviews the state-of-the-art interpretation of proxies used for quantitative reconstruction of the climate-ocean system - Acts as a supplement for undergraduate and graduate courses in paleoceanography and marine geology
Few fields of research in the earth sciences have produced as much data and litera ture as the study of carbonate sediments and rocks. The past 25 years in particular, have seen a significant increase in studies concerning modern marine and fresh water carbonates. With the present worldwide interest in oceanographic research, marine carbonates have received the bulk of the attention, particularly with respect to shallow-water sediments. However, in terms of the variety of environ ments, compositions and modes of formation, non-marine carbonates probably encompass a wider spectrum than do marine types. Our purpose is to present a two-volume treatise on carbonate sediments and rocks, both marine and non-marine. We have confined ourselves to the discussion of modern (Holocene) environments, sediments and components, assuming that the compilation of these data will not only be relevant to those working with modern carbonates but will also serve as a necessary reference source for those interested in ancient analogs. The first volume, by MILLIMAN, deals almost exclu sively with marine environments, while the second volume, by MULLER and FORST NER, will concentrate on the non-marine carbonates.
In response to a request from Congress, Surface Temperature Reconstructions for the Last 2,000 Years assesses the state of scientific efforts to reconstruct surface temperature records for Earth during approximately the last 2,000 years and the implications of these efforts for our understanding of global climate change. Because widespread, reliable temperature records are available only for the last 150 years, scientists estimate temperatures in the more distant past by analyzing "proxy evidence," which includes tree rings, corals, ocean and lake sediments, cave deposits, ice cores, boreholes, and glaciers. Starting in the late 1990s, scientists began using sophisticated methods to combine proxy evidence from many different locations in an effort to estimate surface temperature changes during the last few hundred to few thousand years. This book is an important resource in helping to understand the intricacies of global climate change.