Download Free Recent Developments In The Genetic Improvement Of The Giant Freshwater Prawn Macrobrachium Sp Book in PDF and EPUB Free Download. You can read online Recent Developments In The Genetic Improvement Of The Giant Freshwater Prawn Macrobrachium Sp and write the review.

This manual provides information on the farming of Macrobrachium rosenbergii. Many of the techniques described are also applicable to other species of freshwater prawns that are being cultured. The manual is not a scientific text but is intended to be a practical guide to in-hatchery and on-farm management. The target audience is therefore principally farmers and extension workers. However, it is also hoped that, like the previous manual on this topic, it will be useful for lecturers and students alike in universities and other institutes that provide training in aquaculture.
The farming of the freshwater prawn Macrobrachium rosenbergii has developed rapidly during recent years. Advances in techniques, and the huge expansion of world demand for this species, continue to stimulate the growth of a multi-million dollar industry. This landmark publication is a compendium of information on every aspect of the farming of M. rosenbergii. A comprehensive review of the status of freshwater prawn farming research, development and commercial practice, the book is intended to stimulate further advances in the knowledge and understanding of this important field. An extremely well-known and internationally-respected team of contributing authors have written cutting edge chapters covering all major aspects of the subject. Coverage includes biology, hatchery and grow-out culture systems, feeds and feeding, up-to-date information on the status of freshwater prawn farming around the world, post-harvest handling and processing, markets, and economics and business management. Further chapters are devoted to the culture of other prawn species, prawn capture fisheries and the sustainability of freshwater prawn culture. Contributions to the book have been brought together and edited by Michael New and Wagner Valenti, themselves widely known for their work in this area. The comprehensive information in Freshwater Prawn Culture will give an important commercial edge to anyone involved in the culture and trade of freshwater prawns. Readership should include prawn farm personnel, business managers and researchers, and invertebrate, freshwater and crustacean biologists. Copies of the book should be available on the shelves of all libraries in research establishments and universities where aquaculture and fisheries are studied and taught. Michael Bernard New, OBE is a Past-President of the World Aquaculture Society and President-Elect of the European Aquaculture Society; Wagner Cotroni Valenti is a Professor at the Aquaculture Center, São Paulo State University, Brazil.
The conservation, sustainable use and development of aquatic genetic resources (AqGR) is critical to the future supply of fish. The State of the World’s Aquatic Genetic Resources for Food and Agriculture is the first ever global assessment of these resources, with the scope of this first Report being limited to cultured AqGR and their wild relatives, within national jurisdiction. The Report draws on 92 reports from FAO member countries and five specially commissioned thematic background studies. The reporting countries are responsible for 96 percent of global aquaculture production. The Report sets the context with a review of the state of world’s aquaculture and fisheries and includes overviews of the uses and exchanges of AqGR, the drivers and trends impacting AqGR and the extent of ex situ and in situ conservation efforts. The Report also investigates the roles of stakeholders in AqGR and the levels of activity in research, education, training and extension, and reviews national policies and the levels of regional and international cooperation on AqGR. Finally, needs and challenges are assessed in the context of the findings from the data collected from the countries. The Report represents a snapshot of the present status of AqGR and forms a valuable technical reference document, particularly where it presents standardized key terminology and concepts.
The foundation of quantitative genetics theory was developed during the last century and facilitated many successful breeding programs for cultivated plants and t- restrial livestock. The results have been almost universally impressive, and today nearly all agricultural production utilises genetically improved seed and animals. The aquaculture industry can learn a great deal from these experiences, because the basic theory behind selective breeding is the same for all species. The ?rst published selection experiments in aquaculture started in 1920 s to improve disease resistance in ?sh, but it was not before the 1970 s that the ?rst family based breeding program was initiated for Atlantic salmon in Norway by AKVAFORSK. Unfortunately, the subsequent implementation of selective breeding on a wider scale in aquaculture has been slow, and despite the dramatic gains that have been demonstrated in a number of species, less than 10% of world aquaculture production is currently based on improved stocks. For the long-term sustainability of aquaculture production, there is an urgent need to develop and implement e- cient breeding programs for all species under commercial production. The ability for aquaculture to successfully meet the demands of an ever increasing human p- ulation, will rely on genetically improved stocks that utilise feed, water and land resources in an ef?cient way. Technological advances like genome sequences of aquaculture species, and advanced molecular methods means that there are new and exciting prospects for building on these well-established methods into the future.
The genetic improvement of fish for aquaculture and related fisheries has seen huge advances over recent years. Building upon the previous two editions of Aquaculture and Fisheries Biotechnology: Genetic Approaches, this 3rd edition offers a presentation of traditional selective breeding, modern genetic biotechnology, genomics, gene transfer and gene editing, and the latest developments in genetic biotechnology such as epigenetics, xenogenesis and genome-wide association study coupled with commercial application, the impact of government regulation and expectations for the future. It provides a firm grounding in relevant aspects of classical genetics, before focusing on particular aspects such as sex reversal and breeding as applied in aquaculture and fisheries. It also explores how more recent molecular genetics, genomics and biotechnology techniques can be used and combined in improvement programmes for fish and aquaculture species. A glossary explains the latest terminology used in biotechnology and genetics. This book will be useful for research scientists and students in marine biotechnology, aquaculture biotechnology, and fish genetics and breeding.
Although aquaculture as a biological production system has a long history, systematic and efficient breeding programs to improve economically important traits in the farmed species have rarely been utilized until recently, except for salmonid species. This means that the majority of aquaculture production (more than 90 %) is based on genetically unimproved stocks. In farm animals the situation is vastly different: practically no terrestrial farm production is based on genetically unimproved and undomesticated populations. This difference between aquaculture and livestock production is in spite of the fact that the basic elements of breeding theory are the same for fish and shellfish as for farm animals. One possible reason for the difference is the complexity of reproductive biology in aquatic species, and special consideration needs to be taken in the design of breeding plans for these species. Since 1971 AKVAFORSK, has continuously carried out large scale breeding research projects with salmonid species, and during the latest 15 years also with a number of fresh water and marine species. Results from this work and the results from other institutions around the world have brought forward considerable knowledge, which make the development of efficient breeding programs feasible. The genetic improvement obtained in selection programs for fish and shellfish is remarkable and much higher than what has been achieved in terrestrial farm animals.