Download Free Recent Asian Research On Thermal And Fluid Sciences Book in PDF and EPUB Free Download. You can read online Recent Asian Research On Thermal And Fluid Sciences and write the review.

This book presents a collection of the best papers from the Seventh Asian Joint Workshop on Thermophysics and Fluid Science (AJWTF7 2018), which was held in Trivandrum, India, in November 2018. The papers highlight research outputs from India, China, Japan, Korea and Bangladesh, and many of them report on collaborative efforts by researchers from these countries. The topics covered include Aero-Acoustics, Aerodynamics, Aerospace Engineering, Bio-Fluidics, Combustion, Flow Measurement, Control and Instrumentation, Fluid Dynamics, Heat and Mass Transfer, Thermodynamics, Mixing and Chemically Reacting Flows, Multiphase Flows, Micro/Nano Flows, Noise/NOx/SOx Reduction, Propulsion, Transonic and Supersonic Flows, and Turbomachinery. The book is one of the first on the topic to gather contributions from some of the leading countries in Asia. Given its scope, it will benefit researchers and students working on research problems in the thermal and fluid sciences.
This book gathers the latest advances, innovations, and applications in the field of computational engineering, as presented by leading international researchers and engineers at the 26th International Conference on Computational & Experimental Engineering and Sciences (ICCES), held in Phuket, Thailand on January 6-10, 2021. ICCES covers all aspects of applied sciences and engineering: theoretical, analytical, computational, and experimental studies and solutions of problems in the physical, chemical, biological, mechanical, electrical, and mathematical sciences. As such, the book discusses highly diverse topics, including composites; bioengineering & biomechanics; geotechnical engineering; offshore & arctic engineering; multi-scale & multi-physics fluid engineering; structural integrity & longevity; materials design & simulation; and computer modeling methods in engineering. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.
Nanofluids: Advanced Applications and Numerical Simulations combines the mathematical and numerical studies of nanofluids and their application to a range of applications. The book begins by introducing the principles of nanofluids, structures, types, properties, methods and stability. This is followed by a detailed chapter that explains a full range of numerical techniques for the modeling of nanofluids. Subsequent chapters offer in-depth coverage of target areas, including cooling and heating applications, micro-electric and magnetic devices, chemistry and oil recovery, biomedicine, renewable energy, and automotive engineering. Throughout the book, methods for numerical modelling are described in detail, with supporting equations, techniques, and applied examples. This is a valuable resource for advanced students, scientists, engineers, and R&D professionals working with nanofluids, simulation, and numerical methods for advanced applications, as well as researchers across nanotechnology, biomedicine, electronics, energy, chemistry, materials science and mechanical engineering. - Presents numerical methods for modelling of nanofluids in details - Examines stability, magnetic field, electric field, and other effects on behavior and optical properties - Explores cutting-edge applications of nanofluids by numerical methods
The current, thoroughly revised and updated edition of this approved title, evaluates information sources in the field of technology. It provides the reader not only with information of primary and secondary sources, but also analyses the details of information from all the important technical fields, including environmental technology, biotechnology, aviation and defence, nanotechnology, industrial design, material science, security and health care in the workplace, as well as aspects of the fields of chemistry, electro technology and mechanical engineering. The sources of information presented also contain publications available in printed and electronic form, such as books, journals, electronic magazines, technical reports, dissertations, scientific reports, articles from conferences, meetings and symposiums, patents and patent information, technical standards, products, electronic full text services, abstract and indexing services, bibliographies, reviews, internet sources, reference works and publications of professional associations. Information Sources in Engineering is aimed at librarians and information scientists in technical fields as well as non-professional information specialists, who have to provide information about technical issues. Furthermore, this title is of great value to students and people with technical professions.
This book presents the broad aspects of measurement, performanceanalysis, and characterization for materials and devices through advanced manufacturing processes. The field of measurement and metrology as a precondition for maintaining high-quality products, devices, and systems in materials and advanced manufacturing process applications has grown substantially in recent years. The focus of this book is to present smart materials in numerous technological sectors such as automotive, bio-manufacturing, chemical, electronics, energy, and construction. Advanced materials have novel properties and therefore must be fully characterized and studied in-depth so they can be incorporated into products that will outperform existing products and resolve current problems. The book captures the emerging areas of materials science and advanced manufacturing engineering and presents recent trends in research for researchers, field engineers, and academic professionals.
This three-volume set addresses a new knowledge of function materials, their processing, and their characterizations. "Functional and Smart Materials", covered the synthesis and fabrication route of functional and smart materials for universal applications such as material science, mechanical engineering, manufacturing, metrology, nanotechnology, physics, chemical, biology, chemistry, civil engineering, and food science. "Advanced Manufacturing and Processing Technology" covers the advanced manufacturing technologies includes coating, deposition, cladding, nanotechnology, surface finishing, precision machining, processing, and emerging advanced manufacturing technologies for processing of materials for functional applications. "Characterization, Testing, Measurement and Metrology" covered the application of new and advanced characterization techniques to investigate and analysis the processed materials.
A direct solution of the heat conduction equation with prescribed initial and boundary conditions yields temperature distribution inside a specimen. The direct solution is mathematically considered as a well-posed one because the solution exists, is unique, and continuously depends on input data. The estimation of unknown parameters from the measured temperature data is known as the inverse problem of heat conduction. An error in temperature measurement, thermal time lagging, thermocouple-cavity, or signal noise data makes stability a problem in the estimation of unknown parameters. The solution of the inverse problem can be obtained by employing the gradient or non-gradient based inverse algorithm. The aim of this book is to analyze the inverse problem and heat exchanger applications in the fields of aerospace, mechanical, applied mechanics, environment sciences, and engineering.
Mathematical Modelling of Fluid Dynamics and Nanofluids serves as a comprehensive resource for various aspects of fluid dynamics simulations, nanofluid preparation, and numerical techniques. The book examines the practical implications and real-world applications of various concepts, including nanofluids, magnetohydrodynamics, heat and mass transfer, and radiation. By encompassing these diverse domains, it offers readers a broad perspective on the interconnectedness of these fields. The primary audience for this book includes researchers and graduate students who possess a keen interest in interdisciplinary studies within the realms of fluid dynamics, nanofluids, and biofluids. Its content caters to those who wish to deepen their knowledge and tackle complex problems at the intersection of these disciplines.