Download Free Recent Advances In Theory And Methods For The Analysis Of High Dimensional And High Frequency Financial Data Book in PDF and EPUB Free Download. You can read online Recent Advances In Theory And Methods For The Analysis Of High Dimensional And High Frequency Financial Data and write the review.

Recently, considerable attention has been placed on the development and application of tools useful for the analysis of the high-dimensional and/or high-frequency datasets that now dominate the landscape. The purpose of this Special Issue is to collect both methodological and empirical papers that develop and utilize state-of-the-art econometric techniques for the analysis of such data.
Recently, considerable attention has been placed on the development and application of tools useful for the analysis of the high-dimensional and/or high-frequency datasets that now dominate the landscape. The purpose of this Special Issue is to collect both methodological and empirical papers that develop and utilize state-of-the-art econometric techniques for the analysis of such data.
CUTTING-EDGE DEVELOPMENTS IN HIGH-FREQUENCY FINANCIAL ECONOMETRICS In recent years, the availability of high-frequency data and advances in computing have allowed financial practitioners to design systems that can handle and analyze this information. Handbook of Modeling High-Frequency Data in Finance addresses the many theoretical and practical questions raised by the nature and intrinsic properties of this data. A one-stop compilation of empirical and analytical research, this handbook explores data sampled with high-frequency finance in financial engineering, statistics, and the modern financial business arena. Every chapter uses real-world examples to present new, original, and relevant topics that relate to newly evolving discoveries in high-frequency finance, such as: Designing new methodology to discover elasticity and plasticity of price evolution Constructing microstructure simulation models Calculation of option prices in the presence of jumps and transaction costs Using boosting for financial analysis and trading The handbook motivates practitioners to apply high-frequency finance to real-world situations by including exclusive topics such as risk measurement and management, UHF data, microstructure, dynamic multi-period optimization, mortgage data models, hybrid Monte Carlo, retirement, trading systems and forecasting, pricing, and boosting. The diverse topics and viewpoints presented in each chapter ensure that readers are supplied with a wide treatment of practical methods. Handbook of Modeling High-Frequency Data in Finance is an essential reference for academics and practitioners in finance, business, and econometrics who work with high-frequency data in their everyday work. It also serves as a supplement for risk management and high-frequency finance courses at the upper-undergraduate and graduate levels.
Written by leading experts in the field, this edited volume brings together the latest findings in the area of nonparametric, robust and multivariate statistical methods. The individual contributions cover a wide variety of topics ranging from univariate nonparametric methods to robust methods for complex data structures. Some examples from statistical signal processing are also given. The volume is dedicated to Hannu Oja on the occasion of his 65th birthday and is intended for researchers as well as PhD students with a good knowledge of statistics.
Highlights research in derivatives modelling and markets in a post-crisis world across a number of dimensions or themes. This book addresses the following main areas: derivatives models and pricing, model application and performance backtesting, and new products and market features.
A complete set of statistical tools for beginning financial analysts from a leading authority Written by one of the leading experts on the topic, An Introduction to Analysis of Financial Data with R explores basic concepts of visualization of financial data. Through a fundamental balance between theory and applications, the book supplies readers with an accessible approach to financial econometric models and their applications to real-world empirical research. The author supplies a hands-on introduction to the analysis of financial data using the freely available R software package and case studies to illustrate actual implementations of the discussed methods. The book begins with the basics of financial data, discussing their summary statistics and related visualization methods. Subsequent chapters explore basic time series analysis and simple econometric models for business, finance, and economics as well as related topics including: Linear time series analysis, with coverage of exponential smoothing for forecasting and methods for model comparison Different approaches to calculating asset volatility and various volatility models High-frequency financial data and simple models for price changes, trading intensity, and realized volatility Quantitative methods for risk management, including value at risk and conditional value at risk Econometric and statistical methods for risk assessment based on extreme value theory and quantile regression Throughout the book, the visual nature of the topic is showcased through graphical representations in R, and two detailed case studies demonstrate the relevance of statistics in finance. A related website features additional data sets and R scripts so readers can create their own simulations and test their comprehension of the presented techniques. An Introduction to Analysis of Financial Data with R is an excellent book for introductory courses on time series and business statistics at the upper-undergraduate and graduate level. The book is also an excellent resource for researchers and practitioners in the fields of business, finance, and economics who would like to enhance their understanding of financial data and today's financial markets.
The book contains a selection of papers that were presented at the 3rd Conference in Managing Digital Industry, Technology and Entrepreneurship (3rd CoMDITE) with the theme: Sustainable Future: Trends, Strategies and Development. The Millennium Development Goals, continued as Sustainability Development Goals (SDGs), are effective instruments and have, in recent years, brought many positive changes in numerous countries around the world. Most notably, it has fundamentally changed our way of approaching the tangled set of challenges: States today undertake to achieve concrete development goals; transparency and accountability to citizens and the global public has become a matter of course; and cooperation between the political, economic and societal spheres is no longer questioned. However, in addition to the global pandemic situation it has challenged the business world to develop an outstanding strategy to face extreme uncertainty. Using digital technology and its advancement is believed to be one of the main keys for taking up this challenge. The 3rd Conference in Managing Digital Industry, Technology and Entrepreneurship (the 3rd CoMDITE) has brought forward discussions on implementation of digital technology in strategic, operation, finance, marketing, human resources management, and entrepreneurship around sustainable future issues. The Open Access version of this book, available at http://www.taylorfrancis.com, has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license. Funded by Telkom University, Indonesia.
Contemporary high-frequency engineering design heavily relies on full-wave electromagnetic (EM) analysis. This is primarily due to its versatility and ability to account for phenomena that are important from the point of view of system performance. Unfortunately, versatility comes at the price of a high computational cost of accurate evaluation. Consequently, utilization of simulation models in the design processes is challenging although highly desirable. The aforementioned problems can be alleviated by means of surrogate modeling techniques, the most popular of which are data-driven models. Although a large variety of methods are available, they are all affected by the curse of dimensionality. This is especially pronounced in high-frequency electronics, where typical system responses are highly nonlinear. Construction of practically useful surrogates covering wide ranges of parameters and operating conditions is a considerable challenge.Surrogate Modeling for High-Frequency Design presents a selection of works representing recent advancements in surrogate modeling and their applications to high-frequency design. Some chapters provide a review of specific topics such as neural network modeling of microwave components, while others describe recent attempts to improve existing modeling methodologies. Furthermore, the book features numerous applications of surrogate modeling methodologies to design optimization and uncertainty quantification of antenna, microwave, and analog RF circuits.
This book explores answers to the fundamental questions driving the research, innovation and practices of the latest revolution in scientific, technological and economic development: how does data science transform existing science, technology, industry, economy, profession and education? How does one remain competitive in the data science field? What is responsible for shaping the mindset and skillset of data scientists? Data Science Thinking paints a comprehensive picture of data science as a new scientific paradigm from the scientific evolution perspective, as data science thinking from the scientific-thinking perspective, as a trans-disciplinary science from the disciplinary perspective, and as a new profession and economy from the business perspective.
This book constitutes the proceedings of the International Workshop on Clustering High-Dimensional Data, CHDD 2012, held in Naples, Italy, in May 2012. The 9 papers presented in this volume were carefully reviewed and selected from 15 submissions. They deal with the general subject and issues of high-dimensional data clustering; present examples of techniques used to find and investigate clusters in high dimensionality; and the most common approach to tackle dimensionality problems, namely, dimensionality reduction and its application in clustering.