Download Free Recent Advances In The Study Of Oceanic Whitecaps Book in PDF and EPUB Free Download. You can read online Recent Advances In The Study Of Oceanic Whitecaps and write the review.

This book provides the reader with the a comprehensive summary of the recent advances in the study of whitecaps. It is the first major publication focusing specifically on whitecaps and their role in a variety of climate-relevant air-sea interaction processes since the publication, in 1986, of Oceanic Whitecaps, and Their Role in Air-Sea Exchange Processes, edited by Edward Charles Monahan and Gearoid Mac Niocaill (published by Springer). This book also provides the interested reader with a review of the initial work done on this topic in the second half of the 20th Century.
This new edition introduces the fundamentals of passive microwave remote sensing of oceans, including the physical principles of microwave radiometry, novel observational data, their interpretation, and applications. It not only demonstrates and examines the recent advantages and state of the art of microwave data but also provides guidance for explaining complex ocean studies and advanced applications. All chapters are thoroughly updated with detailed analysis of space‐based microwave missions, and a new chapter on space‐based microwave radiometer experiments has been added. This book discusses the power of microwave remote sensing as an efficient tool for diagnostics of ocean phenomena in research and education. Features New to this Edition: • Includes a new chapter and additional data, images, illustrations, and references. • Uses ocean microwave data, acquired from different platforms, to illustrate different methods of analysis and interpretation. • Updates information on recent and important satellite missions dedicated to microwave remote sensing of oceans. • Offers more detailed analysis of multiband microwave data and images. • Provides examples of microwave data that cover different ocean environmental phenomena and hydro‐physical fields, including global and local ocean features. • Presents additional material on advanced applications, including detection capabilities. This book is intended for postgraduate students and professionals working in fields related to remote sensing, geography, oceanography, civil, environmental, and geotechnical engineering.
Noisy Oceans Measuring devices such as ocean bottom seismometers and hydrophones designed to detect earthquakes pick up many other signals. These were previously ignored as background noise from unknown sources, but advanced technology now allows insights into the noise created from icebergs, ships, hydrothermal vents, whales, rain, marine engineering, and more. Noisy Oceans: Monitoring Seismic and Acoustic Signals in the Marine Environment is a comprehensive guide to non-tectonic marine noise originating from different environmental, biological, and anthropogenic sources. Volume highlights include: Overview of marine soundscapes and their sources Existing and new methods for studying acoustic signals Case studies from around the world Spans disciplines from geology and geophysicists to biology Explores the impacts and implications of marine noise The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
While various volumes havepreviously been de­ bable, answer to this question lies in the obser­ vation that while whitecaps are some of the voted to such topics as droplets and bubbles, it is our conceit that this is the first volume dedi­ most apparent features associated with high sea cated to the description of the phenomenon states, they have also pro\'ed to be someofthe of oceanic whitecapping, and to a considera­ most difficult objects to measure and describe tion of the role these whitecapsplay in satellite quantitatively, and while scientists as a group marine remote sensing, in sea-salt aerosol gene­ may like to tackle difficult problems, we ration, and in a broad range ofother sea surface should not be accused ofundue modesty when processes. This observation, reOecting in part we observe that as a group we also have a finite the relatively modest attention paid until re­ tolerance for frustration and ahuman,perhaps cently by the scientific community to white­ aesthetic, prejudice in favour ofnatural pheno­ caps, is noteworthy when one considers that mena that are amcnable to detailed description. collectively whitecaps are to thegeneral public It is appropriate to note that Professor Wood­ one of the most striking features of the sea­ cock, to whom this volume is dedicated, ap­ scape.
The papers contained in this volume were presented orally at the seventh POLYMODEL conference, held at Sunderland Polytechnic in the United King dom in May 1984 and sponsored by Barclays Bank PLC and Imperial Chemical Industries Ltd. The conferences are organised annually by the North East of England Polytechnic's Mathematical Modelling and Computer Simulation Group - POLYMODEL. The Group is a non-profit making organisation based on the mathematics department of the three polytechnics in the region and has membership drawn from those educational institutions and from regional industry. Its objective is to promote research and collaboration in mathematical and computer-based modelling. After a short introductory chapter, the volume may be considered as dividing naturally into four parts. Chapters 2 to 5 constitute the first part on Tides, Storm Surges and Coastal Circulations which deals with the hydrodynamics of coastal seas. Chapters 6 to 11 concern Coastal Engine ering Modelling and discuss such coastal phenomena as beach erosion, sediment transport, and non-linear waves. The third part (Chapters 12 to 16) on Offshore Structures considers sea structures in general and the connections between the structures (hoses, moorings, pipelines) in particular. The last two chapters focus on Offshore Corrosion problems.
This volume is the proceedings of the Fifth International Conference on Fluid Mechanics (ICFM-V), the primary forum for the presentation of technological advances and research results in the fields of theoretical, experimental, and computational Fluid Mechanics. Topics include: flow instability and turbulence, aerodynamics and gas dynamics, industrial and environmental fluid mechanics, biofluid mechanics, geophysical fluid mechanics, plasma and magneto-hydrodynamics, and others.
The transfer across the surface of environmental waters is of interest as an important phase in the geophysical and natural biochemical cycles of numer ous substances; indeed it governs the transition, one way or the other, be tween the dissolved state in the water and the gaseous state in the atmo sphere. Especially with increasing population and industrialization, gas transfer at water surfaces has become a critical factor in the understanding of the various pathways of wastes in the environment and of their engineering management. This interfacial mass transfer is, by its very nature, highly complex. The air and the water are usually in turbulent motion, and the interface be tween them is irregular, and disturbed by waves, sometimes accompanied by breaking, spray and bubble formation. Thus the transfer involves a wide variety of physical phenomena occurring over a wide range of scales. As a consequence, scientists and engineers from diverse disciplines and problem areas, have approached the problem, often with greatly differing analytical and experimental techniques and methodologies.
This book will serve as a reference guide, and state-of-the-art review, for the wide spectrum of numerical models and computational techniques available to solve some of the most challenging problems in coastal engineering. The topics covered in this book, are explained fundamentally from a numerical perspective and also include practical examples applications. Important classic themes such as wave generation, propagation and breaking, turbulence modelling and sediment transport are complemented by hot topics such as fluid and structure interaction or multi-body interaction to provide an integral overview on numerical techniques for coastal engineering. Through the vision of 10 high impact authors, each an expert in one or more of the fields included in this work, the chapters offer a broad perspective providing several different approaches, which the readers can compare critically to select the most suitable for their needs. Advanced Numerical Modelling of Wave Structure Interaction will be useful for a wide audience, including PhD students, research scientists, numerical model developers and coastal engineering consultants alike.