Download Free Recent Advances In Reliability And Quality In Design Book in PDF and EPUB Free Download. You can read online Recent Advances In Reliability And Quality In Design and write the review.

This book presents the latest theories and methods of reliability and quality, with emphasis on reliability and quality in design and modelling. Each chapter is written by active researchers and professionals with international reputations, providing material which bridges the gap between theory and practice to trigger new practices and research challenges. The book therefore provides a state-of-the-art survey of reliability and quality in design and practices.
This volume presents recent research in reliability and quality theory and its applications by many leading experts in the field. The subjects covered include reliability optimization, software reliability, maintenance, quality engineering, system reliability, Monte Carlo simulation, tolerance design optimization, manufacturing system estimation, neural networks, software quality assessment, optimization design of life tests, software quality, reliability-centered maintenance, multivariate control chart, methodology for measurement of test effectiveness, imperfect preventive maintenance, Markovian reliability modeling, accelerated life testing, and system availability assessment. The book will serve as a reference for postgraduate students and will also prove useful for practitioners and researchers in reliability and quality engineering. Sample Chapter(s). Chapter 1.1: Introduction (88 KB). Chapter 1.2: The Symmetrical Johnson Su Distributions (101 KB). Chapter 1.3: Application to Control Charts (79 KB). Chapter 1.4: An Example (84 KB). Chapter 1.5: How Kurtosis Affects Classical Charts (104 KB). Chapter 1.6: OC and ARL Curves (133 KB). Chapter 1.7: Conlusions (129 KB). Contents: Control Charts for Data Having a Symmetrical Distribution with a Positive Kurtosis (P Philippe); A Software Reliability Model with Testing Coverage and Imperfect Debugging (X Zhang & H Pham); Cost Allocation for Software Reliability (O Berman & M Cutler); General Reliability Test Plans for One-Shot Devices (W Zhang & W-K Shiue); Multivariate Control Chart (M-W Lu & R J Rudy); Optimal Preparedness Maintenance of Multi-Unit Systems with Imperfect Maintenance and Economic Dependence (H Wang et al.); Estimation of System Reliability by Variationally Processed Monte Carlo Simulation (M Chang et al.); A Bayesian Approach to the Optimal Policy under Imperfect Preventive Maintenance Models (K-S Park & C-H Jun); Design of Life Tests Based on Multi-Stage Decision Process (A Kanagawa & H Ohta); Reliability-Centered Maintenance for Light Rail Equipment (K H K Leung et al.); Incorporating Environmental Concepts with Tolerance Design Optimization Model (G Chen); Markovian Reliability Modeling for Software Safety/Availability Measurement (K Tokuno & S Yamada); Group Control Charts with Variable Stream and Sample Sizes (K T Lee et al.); A Methodology for the Measurement of Test Effectiveness (J C Munson & A P Nikora); Modeling Software Quality with Classification Trees (T M Khoshgoftaar & E B Allen); Highly Reliable Systems: Designing Software for Improved Assessment (B Cukic & F Bastani); Manufacturing Systems Estimation Using Neural Network Models (P L Cooper & G J Savage); A Deterministic Selective Maintenance Model for Complex Systems (C R Cassady et al.). Readership: Practitioners, postgraduate students and researchers in reliability and quality engineering.
This unique volume presents chapters written on the areas of life-testing and reliability by many well-known researchers who have contributed significantly to these two areas over the years. Chapters cover a wide range of topics such as inference under censoring and truncation, reliability growth models, designs to improve quality, prediction techniques, Bayesian analysis of reliability, multivariate methods, accelerated testing, and more. The book is written in an easy-to-follow style, first presenting the necessary theoretical details and then illustrating the methods with a numerical examples wherever possible. Many tables and graphs that are essential for the use of some of the new methodologies are presented throughout the volume. Numerous examples provide the reader with a clear understanding of the methods presented as well as with insight into the applications of these results.
How to design for optimum maintenance capabilities and minimize the repair time Design for Maintainability offers engineers a wide range of tools and techniques for incorporating maintainability into the design process for complex systems. With contributions from noted experts on the topic, the book explains how to design for optimum maintenance capabilities while simultaneously minimizing the time to repair equipment. The book contains a wealth of examples and the most up-to-date maintainability design practices that have proven to result in better system readiness, shorter downtimes, and substantial cost savings over the entire system life cycle, thereby, decreasing the Total Cost of Ownership. Design for Maintainability offers a wealth of design practices not covered in typical engineering books, thus allowing readers to think outside the box when developing maintainability design requirements. The books principles and practices can help engineers to dramatically improve their ability to compete in global markets and gain widespread customer satisfaction. This important book: Offers a complete overview of maintainability engineering as a system engineering discipline Includes contributions from authors who are recognized leaders in the field Contains real-life design examples, both good and bad, from various industries Presents realistic illustrations of good maintainability design principles Provides discussion of the interrelationships between maintainability with other related disciplines Explores trending topics in technologies Written for design and logistics engineers and managers, Design for Maintainability is a comprehensive resource containing the most reliable and innovative techniques for improving maintainability when designing a system or product.
The aim of this book is to provide a platform to academicians, practitioners, and researchers to understand current and future trends in software reliability growth modeling. Emphasis will be on qualitative work relevant to the theme with particular importance given to mathematical modeling for software reliability and various methods and applications of multi attributed decision making in governing the software performance. Presents software quality and security models Offers reliability analysis, assurance techniques for software systems Covers methodologies, tools, and practical applications of software reliability modeling and testing resources Includes robust reliability design techniques, diagnostic, and decision support Discusses stochastic modelling for software systems
A unique, design-based approach to reliability engineering Design for Reliability provides engineers and managers with a range of tools and techniques for incorporating reliability into the design process for complex systems. It clearly explains how to design for zero failure of critical system functions, leading to enormous savings in product life-cycle costs and a dramatic improvement in the ability to compete in global markets. Readers will find a wealth of design practices not covered in typical engineering books, allowing them to think outside the box when developing reliability requirements. They will learn to address high failure rates associated with systems that are not properly designed for reliability, avoiding expensive and time-consuming engineering changes, such as excessive testing, repairs, maintenance, inspection, and logistics. Special features of this book include: A unified approach that integrates ideas from computer science and reliability engineering Techniques applicable to reliability as well as safety, maintainability, system integration, and logistic engineering Chapters on design for extreme environments, developing reliable software, design for trustworthiness, and HALT influence on design Design for Reliability is a must-have guide for engineers and managers in R&D, product development, reliability engineering, product safety, and quality assurance, as well as anyone who needs to deliver high product performance at a lower cost while minimizing system failure.
Drawing of real-world issues and with supporting data from industry, this book overviews the technique and equipment available to engineers and scientists to identify the solutions of the physical essence of engineering problems in simulation, accelerated testing, prediction, quality improvement, and risk during the design, manufacturing, and maintenance stages. For this goal the book integrates Quality Improvement and Accelerated Reliability/ Durability/ Maintainability/Test Engineering concepts. Accelerated Quality and Reliability Solutions includes new and unpublished aspects in quality: - complex analysis of factors that influence product quality, and other quality development and improvement problems during design and manufacturing ; in simulation: - the strategy for development of accurate physical simulation of field input influences on the actual product – a system of control for physical simulation of the random input influences – a methodology for selecting a representative input region for accurate simulation of the field conditions; in testing: - useful accelerated reliability testing (UART) – accelerated multiple environmental testing technology – trends in development of UART technology; in studying climate and reliability; in prediction: - accurate prediction (AP) of reliability, durability, and maintainability - criteria of AP - development of techniques, etc.. The book includes new and effective aspects integration of quality, reliability, and maintainability. Other key features: - Includes aspects of quality integrated with reliability which can help to solve earlier inaccessible problems during design, manufacturing, and usage - Develops a new approach to improving the engineering culture for solving quality and reliability problems. - Enables the accurate prediction of quality, reliability, durability, and maintainability - Proposes strategies for accelerated quality, reliability, durability, and maintainability improvement and development - Combines new techniques with equipment for accurate physical simulation of field situation (mechanical, electrical, multi-environmental, and other influences, as well as human and other factors) for development accelerated testing (including reliability testing) and research - Overviews the latest techniques in physical simulation; accelerated testing; prediction of reliability, durability, and maintainability; quality development and improvement; safety aspects of risk assessment, especially for transportation - Supported by real life examples and industry data - Deals with the latest techniques in physical simulation, accelerated testing, prediction of reliability, durability, maintainability, quality development and safety aspects of risk assessment - Provides step-by-step guidance on the accurate prediction of quality factors, the physical simulation of field situations and of accelerated reliability testing - Dramatically reduces recalls by solving product improvement problems through the integration of quality development with reliability
As engineering systems become more and more complex, industry has recognized the importance of system and product reliability and places ever increasing emphasis on it during the design phase. Despite its efforts, however, industry continues to lose billions of dollars each year because of unexpected system failures. Therefore, it becomes increasingly important for designers and engineers to have a solid grounding in reliability engineering and keep abreast of new developments and research results.
Researchers in the engineering industry and academia are making important advances on reliability-based design and modeling of uncertainty when data is limited. Non deterministic approaches have enabled industries to save billions by reducing design and warranty costs and by improving quality. Considering the lack of comprehensive and defini
A one-stop reference guide to design for safety principles and applications Design for Safety (DfSa) provides design engineers and engineering managers with a range of tools and techniques for incorporating safety into the design process for complex systems. It explains how to design for maximum safe conditions and minimum risk of accidents. The book covers safety design practices, which will result in improved safety, fewer accidents, and substantial savings in life cycle costs for producers and users. Readers who apply DfSa principles can expect to have a dramatic improvement in the ability to compete in global markets. They will also find a wealth of design practices not covered in typical engineering books—allowing them to think outside the box when developing safety requirements. Design Safety is already a high demand field due to its importance to system design and will be even more vital for engineers in multiple design disciplines as more systems become increasingly complex and liabilities increase. Therefore, risk mitigation methods to design systems with safety features are becoming more important. Designing systems for safety has been a high priority for many safety-critical systems—especially in the aerospace and military industries. However, with the expansion of technological innovations into other market places, industries that had not previously considered safety design requirements are now using the technology in applications. Design for Safety: Covers trending topics and the latest technologies Provides ten paradigms for managing and designing systems for safety and uses them as guiding themes throughout the book Logically defines the parameters and concepts, sets the safety program and requirements, covers basic methodologies, investigates lessons from history, and addresses specialty topics within the topic of Design for Safety (DfSa) Supplements other books in the series on Quality and Reliability Engineering Design for Safety is an ideal book for new and experienced engineers and managers who are involved with design, testing, and maintenance of safety critical applications. It is also helpful for advanced undergraduate and postgraduate students in engineering. Design for Safety is the second in a series of “Design for” books. Design for Reliability was the first in the series with more planned for the future.