Download Free Recent Advances In Memetic Algorithms Book in PDF and EPUB Free Download. You can read online Recent Advances In Memetic Algorithms and write the review.

Memetic algorithms are evolutionary algorithms that apply a local search process to refine solutions to hard problems. Memetic algorithms are the subject of intense scientific research and have been successfully applied to a multitude of real-world problems ranging from the construction of optimal university exam timetables, to the prediction of protein structures and the optimal design of space-craft trajectories. This monograph presents a rich state-of-the-art gallery of works on memetic algorithms. Recent Advances in Memetic Algorithms is the first book that focuses on this technology as the central topical matter. This book gives a coherent, integrated view on both good practice examples and new trends including a concise and self-contained introduction to memetic algorithms. It is a necessary read for postgraduate students and researchers interested in recent advances in search and optimization technologies based on memetic algorithms, but can also be used as complement to undergraduate textbooks on artificial intelligence.
This book includes original research findings in the field of memetic algorithms for image processing applications. It gathers contributions on theory, case studies, and design methods pertaining to memetic algorithms for image processing applications ranging from defence, medical image processing, and surveillance, to computer vision, robotics, etc. The content presented here provides new directions for future research from both theoretical and practical viewpoints, and will spur further advances in the field.
Solving practical problems often requires the integration of information and knowledge from many different sources, taking into account uncertainty and impreciseness. The 2010 International Symposium on Integrated Uncertainty Management and Applications (IUM’2010), which takes place at the Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan, between 9th–11th April, is therefore conceived as a forum for the discussion and exchange of research results, ideas for and experience of application among researchers and practitioners involved with all aspects of uncertainty modelling and management.
The application of sophisticated evolutionary computing approaches for solving complex problems with multiple conflicting objectives in science and engineering have increased steadily in the recent years. Within this growing trend, Memetic algorithms are, perhaps, one of the most successful stories, having demonstrated better efficacy in dealing with multi-objective problems as compared to its conventional counterparts. Nonetheless, researchers are only beginning to realize the vast potential of multi-objective Memetic algorithm and there remain many open topics in its design. This book presents a very first comprehensive collection of works, written by leading researchers in the field, and reflects the current state-of-the-art in the theory and practice of multi-objective Memetic algorithms. "Multi-Objective Memetic algorithms" is organized for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of Memetic algorithms and multi-objective optimization.
Advances in Computing, Communication, Automation and Biomedical Technology aims to bring together leading academic, scientists, researchers, industry representatives, postdoctoral fellows and research scholars around the world to share their knowledge and research expertise, to advances in the areas of Computing, Communication, Electrical, Civil, Mechanical and Biomedical Systems as well as to create a prospective collaboration and networking on various areas. It also provides a premier interdisciplinary platform for researchers, practitioners, and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered, and solutions adopted in the fields of innovation.
This book presents the proceedings of an International Conference on Advances in Engineering Structures, Mechanics & Construction, held in Waterloo, Ontario, Canada, May 14-17, 2006. The contents include contains the texts of all three plenary presentations and all seventy-three technical papers by more than 153 authors, presenting the latest advances in engineering structures, mechanics and construction research and practice.
This unique volume presents the scientific achievements, significant discoveries and pioneering contributions of various academicians, industrialist and research scholars. The book is an essential source of reference and provides a comprehensive overview of the author's work in the field of mathematics, statistics and computer science.
This book presents recent advances on hybrid intelligent systems using soft computing techniques for intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain groups of papers around a similar subject. The first part consists of papers with the main theme of hybrid intelligent systems for control and robotics, which are basically state of the art papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of hybrid intelligent systems for pattern recognition and time series prediction, which are basically papers using nature-inspired techniques, like evolutionary algorithms, fuzzy logic and neural networks, for achieving efficient pattern recognition or time series prediction. The third part contains papers with the theme of bio-inspired and genetic optimization methods, which basically consider the proposal of new methods and applications of bio-inspired optimization to solve complex optimization of real problems. The fourth part contains papers that deal with the application of intelligent optimization techniques in real world problems in scheduling, planning and manufacturing. The fifth part contains papers with the theme of evolutionary methods and intelligent computing, which are papers considering soft computing methods for applications related to diverse areas, such as natural language processing, recommending systems and optimization.
This two-volume set LNCS 6691 and 6692 constitutes the refereed proceedings of the 11th International Work-Conference on Artificial Neural Networks, IWANN 2011, held in Torremolinos-Málaga, Spain, in June 2011. The 154 revised papers were carefully reviewed and selected from 202 submissions for presentation in two volumes. The second volume includes 76 papers organized in topical sections on video and image processing; hybrid artificial neural networks: models, algorithms and data; advances in machine learning for bioinformatics and computational biomedicine; biometric systems for human-machine interaction; data mining in biomedicine; bio-inspired combinatorial optimization; applying evolutionary computation and nature-inspired algorithms to formal methods; recent advances on fuzzy logic and soft computing applications; new advances in theory and applications of ICA-based algorithms; biological and bio-inspired dynamical systems; and interactive and cognitive environments. The last section contains 9 papers from the International Workshop on Intelligent Systems for Context-Based Information Fusion, ISCIF 2011, held at IWANN 2011.
Intelligent paradigms are increasingly finding their ways in the design and development of decision support systems. This book presents a sample of recent research results from key researchers. The contributions include: Introduction to intelligent systems in decision making - A new method of ranking intuitionistic fuzzy alternatives - Fuzzy rule base model identification by bacterial memetic algorithms - Discovering associations with uncertainty from large databases - Dempster-Shafer structures, monotonic set measures and decision making - Interpretable decision-making models - A general methodology for managerial decision making - Supporting decision making via verbalization of data analysis results using linguistic data summaries - Computational intelligence in medical decisions making. This book is directed to the researchers, graduate students, professors, decision makers and to those who are interested to investigate intelligent paradigms in decision making.