Download Free Recent Advances In Group Theory And Low Dimensional Topology Book in PDF and EPUB Free Download. You can read online Recent Advances In Group Theory And Low Dimensional Topology and write the review.

This book consists of a selection of articles devoted to new ideas and developments in low dimensional topology. Low dimensions refer to dimensions three and four for the topology of manifolds and their submanifolds. Thus we have papers related to both manifolds and to knotted submanifolds of dimension one in three (classical knot theory) and two in four (surfaces in four dimensional spaces). Some of the work involves virtual knot theory where the knots are abstractions of classical knots but can be represented by knots embedded in surfaces. This leads both to new interactions with classical topology and to new interactions with essential combinatorics.
There are a number of specialties in low-dimensional topology that can find in their ``family tree'' a common ancestry in the theory of surface mappings. These include knot theory as studied through the use of braid representations, and 3-manifolds as studied through the use of Heegaard splittings. The study of the surface mapping class group (the modular group) is of course a rich subject in its own right, with relations to many different fields of mathematics and theoreticalphysics. However, its most direct and remarkable manifestation is probably in the vast area of low-dimensional topology. Although the scene of this area has been changed dramatically and experienced significant expansion since the original publication of Professor Joan Birman's seminal work,Braids, Links,and Mapping Class Groups(Princeton University Press), she brought together mathematicians whose research span many specialties, all of common lineage. The topics covered are quite diverse. Yet they reflect well the aim and spirit of the conference: to explore how these various specialties in low-dimensional topology have diverged in the past 20-25 years, as well as to explore common threads and potential future directions of development. This volume is dedicated to Joan Birman by hercolleagues with deep admiration and appreciation of her contribution to low-dimensional topology.
This book contains surveys and research articles on the state-of-the-art in finitely presented groups for researchers and graduate students. Overviews of current trends in exponential groups and of the classification of finite triangle groups and finite generalized tetrahedron groups are complemented by new results on a conjecture of Rosenberger and an approximation theorem. A special emphasis is on algorithmic techniques and their complexity, both for finitely generated groups and for finite Z-algebras, including explicit computer calculations highlighting important classical methods. A further chapter surveys connections to mathematical logic, in particular to universal theories of various classes of groups, and contains new results on countable elementary free groups. Applications to cryptography include overviews of techniques based on representations of p-groups and of non-commutative group actions. Further applications of finitely generated groups to topology and artificial intelligence complete the volume. All in all, leading experts provide up-to-date overviews and current trends in combinatorial group theory and its connections to cryptography and other areas.
This book deals with the connections between topology and ordered groups. It begins with a self-contained introduction to orderable groups and from there explores the interactions between orderability and objects in low-dimensional topology, such as knot theory, braid groups, and 3-manifolds, as well as groups of homeomorphisms and other topological structures. The book also addresses recent applications of orderability in the studies of codimension-one foliations and Heegaard-Floer homology. The use of topological methods in proving algebraic results is another feature of the book. The book w.
This book demonstrates the lively interaction between algebraic topology, very low dimensional topology and combinatorial group theory. Many of the ideas presented are still in their infancy, and it is hoped that the work here will spur others to new and exciting developments. Among the many techniques disussed are the use of obstruction groups to distinguish certain exact sequences and several graph theoretic techniques with applications to the theory of groups.
This book surveys quandle theory, starting from basic motivations and going on to introduce recent developments of quandles with topological applications and related topics. The book is written from topological aspects, but it illustrates how esteemed quandle theory is in mathematics, and it constitutes a crash course for studying quandles.More precisely, this work emphasizes the fresh perspective that quandle theory can be useful for the study of low-dimensional topology (e.g., knot theory) and relative objects with symmetry. The direction of research is summarized as “We shall thoroughly (re)interpret the previous studies of relative symmetry in terms of the quandle”. The perspectives contained herein can be summarized by the following topics. The first is on relative objects G/H, where G and H are groups, e.g., polyhedrons, reflection, and symmetric spaces. Next, central extensions of groups are discussed, e.g., spin structures, K2 groups, and some geometric anomalies. The third topic is a method to study relative information on a 3-dimensional manifold with a boundary, e.g., knot theory, relative cup products, and relative group cohomology.For applications in topology, it is shown that from the perspective that some existing results in topology can be recovered from some quandles, a method is provided to diagrammatically compute some “relative homology”. (Such classes since have been considered to be uncomputable and speculative). Furthermore, the book provides a perspective that unifies some previous studies of quandles.The former part of the book explains motivations for studying quandles and discusses basic properties of quandles. The latter focuses on low-dimensional topology or knot theory. Finally, problems and possibilities for future developments of quandle theory are posed.
Presents the current state of knowledge in all aspects of two-dimensional homotopy theory. Useful for both students and experts.
Teichmuller modular groups, also known as mapping class groups of surfaces, serve as a meeting ground for several branches of mathematics, including low-dimensional topology, the theory of Teichmuller spaces, group theory, and, more recently, mathematical physics. The present work focuses mainly on the group-theoretic properties of these groups and their subgroups. The technical tools come from Thurston's theory of surfaces - his classification of surface diffeomorphisms and the theory of measured foliations on surfaces.The guiding principle of this investigation is a deep analogy between modular groups and linear groups. For some of the central results of the theory of linear groups (such as the theorems of Platonov, Tits, and Margulis-Soifer), the author provides analogous results for the case of subgroups of modular groups. The results also include a clear geometric picture of subgroups of modular groups and their action on Thurston's boundary of Teichmuller spaces. Aimed at research mathematicians and graduate students, this book is suitable as supplementary material in advanced graduate courses.
This volume contains the proceedings of three special sessions: Algebra and Computer Science, held during the Joint AMS-EMS-SPM meeting in Porto, Portugal, June 10–13, 2015; Groups, Algorithms, and Cryptography, held during the Joint Mathematics Meeting in San Antonio, TX, January 10–13, 2015; and Applications of Algebra to Cryptography, held during the Joint AMS-Israel Mathematical Union meeting in Tel-Aviv, Israel, June 16–19, 2014. Papers contained in this volume address a wide range of topics, from theoretical aspects of algebra, namely group theory, universal algebra and related areas, to applications in several different areas of computer science. From the computational side, the book aims to reflect the rapidly emerging area of algorithmic problems in algebra, their computational complexity and applications, including information security, constraint satisfaction problems, and decision theory. The book gives special attention to recent advances in quantum computing that highlight the need for a variety of new intractability assumptions and have resulted in a new area called group-based cryptography.