Download Free Recent Advances In Fuzzy Sets Theory Fractional Calculus Dynamic Systems And Optimization Book in PDF and EPUB Free Download. You can read online Recent Advances In Fuzzy Sets Theory Fractional Calculus Dynamic Systems And Optimization and write the review.

We describe in this book recent advances in fuzzy sets theory, fractional calculus, dynamic systems, and optimization. The book provides a setting for the discussion of recent developments in a wide variety of topics including partial differential equations, dynamic systems, optimization, numerical analysis, fuzzy sets theory, fractional calculus, and its applications. The book is aimed at bringing together contributions from leading academic scientists, researchers, and research scholars to exchange and share their experiences and research results on all aspects of applied mathematics, modeling, algebra, economics, finance, and applications. It also provides an interdisciplinary platform for researchers, practitioners, and educators to present the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of applied mathematics. The published chapters address various aspects of academic scientists, researchers, and research scholars in many variety mathematical topics.
We describe in this book recent advances in fuzzy sets theory, fractional calculus, dynamic systems, and optimization. The book provides a setting for the discussion of recent developments in a wide variety of topics including partial differential equations, dynamic systems, optimization, numerical analysis, fuzzy sets theory, fractional calculus, and its applications. The book is aimed at bringing together contributions from leading academic scientists, researchers, and research scholars to exchange and share their experiences and research results on all aspects of applied mathematics, modeling, algebra, economics, finance, and applications. It also provides an interdisciplinary platform for researchers, practitioners, and educators to present the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of applied mathematics. The published chapters address various aspects of academic scientists, researchers, and research scholars in many variety mathematical topics.
Fuzzy logic, which is based on the concept of fuzzy set, has enabled scientists to create models under conditions of imprecision, vagueness, or both at once. As a result, it has now found many important applications in almost all sectors of human activity, becoming a complementary feature and supporter of probability theory, which is suitable for modelling situations of uncertainty derived from randomness. Fuzzy mathematics has also significantly developed at the theoretical level, providing important insights into branches of traditional mathematics like algebra, analysis, geometry, topology, and more. With such widespread applications, fuzzy sets and logic are an important area of focus in mathematics. The Handbook of Research on Advances and Applications of Fuzzy Sets and Logic studies recent theoretical advances of fuzzy sets and numbers, fuzzy systems, fuzzy logic and their generalizations, extensions, and more. This book also explores the applications of fuzzy sets and logic applied to science, technology, and everyday life to further provide research on the subject. This book is ideal for mathematicians, physicists, computer specialists, engineers, practitioners, researchers, academicians, and students who are looking to learn more about fuzzy sets, fuzzy logic, and their applications.
This book provides an essential introduction to the field of dynamical models. Starting from classical theories such as set theory and probability, it allows readers to draw near to the fuzzy case. On one hand, the book equips readers with a fundamental understanding of the theoretical underpinnings of fuzzy sets and fuzzy dynamical systems. On the other, it demonstrates how these theories are used to solve modeling problems in biomathematics, and presents existing derivatives and integrals applied to the context of fuzzy functions. Each of the major topics is accompanied by examples, worked-out exercises, and exercises to be completed. Moreover, many applications to real problems are presented. The book has been developed on the basis of the authors’ lectures to university students and is accordingly primarily intended as a textbook for both upper-level undergraduates and graduates in applied mathematics, statistics, and engineering. It also offers a valuable resource for practitioners such as mathematical consultants and modelers, and for researchers alike, as it may provide both groups with new ideas and inspirations for projects in the fields of fuzzy logic and biomathematics.
This book contains new and useful materials concerning fuzzy fractional differential and integral operators and their relationship. As the title of the book suggests, the fuzzy subject matter is one of the most important tools discussed. Therefore, it begins by providing a brief but important and new description of fuzzy sets and the computational calculus they require. Fuzzy fractals and fractional operators have a broad range of applications in the engineering, medical and economic sciences. Although these operators have been addressed briefly in previous papers, this book represents the first comprehensive collection of all relevant explanations. Most of the real problems in the biological and engineering sciences involve dynamic models, which are defined by fuzzy fractional operators in the form of fuzzy fractional initial value problems. Another important goal of this book is to solve these systems and analyze their solutions both theoretically and numerically. Given the content covered, the book will benefit all researchers and students in the mathematical and computer sciences, but also the engineering sciences.
This book at hand is an appropriate addition to the field of fractional calculus applied to control systems. If an engineer or a researcher wishes to delve into fractional-order systems, then this book has many collections of such systems to work upon, and this book also tells the reader about how one can convert an integer-order system into an appropriate fractional-order one through an efficient and simple algorithm. If the reader further wants to explore the controller design for the fractional-order systems, then for them, this book provides a variety of controller design strategies. The use of fractional-order derivatives and integrals in control theory leads to better results than integer-order approaches and hence provides solid motivation for further development of control theory. Fractional-order models are more useful than the integer-order models when accuracy is of paramount importance. Real-time experimental validation of controller design strategies for the fractional-order plants is available. This book is beneficial to the academic institutes for postgraduate and advanced research-level that need a specific textbook on fractional control and its applications in srobotic manipulators. The book is also a valuable teaching and learning resource for undergraduate and postgraduate students.
This book consists of selected papers written by the founder of fuzzy set theory, Lotfi A Zadeh. Since Zadeh is not only the founder of this field, but has also been the principal contributor to its development over the last 30 years, the papers contain virtually all the major ideas in fuzzy set theory, fuzzy logic, and fuzzy systems in their historical context. Many of the ideas presented in the papers are still open to further development. The book is thus an important resource for anyone interested in the areas of fuzzy set theory, fuzzy logic, and fuzzy systems, as well as their applications. Moreover, the book is also intended to play a useful role in higher education, as a rich source of supplementary reading in relevant courses and seminars.The book contains a bibliography of all papers published by Zadeh in the period 1949-1995. It also contains an introduction that traces the development of Zadeh's ideas pertaining to fuzzy sets, fuzzy logic, and fuzzy systems via his papers. The ideas range from his 1965 seminal idea of the concept of a fuzzy set to ideas reflecting his current interest in computing with words — a computing in which linguistic expressions are used in place of numbers.Places in the papers, where each idea is presented can easily be found by the reader via the Subject Index.
This Special Issue collects the latest results on differential/difference equations, the mathematics of networks, and their applications to engineering and physical phenomena. It features nine high-quality papers that were published with original research results. The Special Issue brings together mathematicians with physicists, engineers, as well as other scientists.
During the last 20 years the Portuguese association of automatic control, Associação Portuguesa de Controlo Automático, with the sponsorship of IFAC have established the CONTROLO conference as a reference international forum where an effective exchange of knowledge and experience amongst researchers active in various theoretical and applied areas of systems and control can take place, always including considerable space for promoting new technical applications and developments, real-world challenges and success stories. In this 11th edition the CONTROLO conference evolved by introducing two strategic partnerships with Spanish and Brazilian associations in automatic control, Comité Español de Automática and Sociedade Brasileira de Automatica, respectively.
This book may be used as reference for graduate students interested in fuzzy differential equations and researchers working in fuzzy sets and systems, dynamical systems, uncertainty analysis, and applications of uncertain dynamical systems. Beginning with a historical overview and introduction to fundamental notions of fuzzy sets, including different possibilities of fuzzy differentiation and metric spaces, this book moves on to an overview of fuzzy calculus thorough exposition and comparison of different approaches. Innovative theories of fuzzy calculus and fuzzy differential equations using fuzzy bunches of functions are introduced and explored. Launching with a brief review of essential theories, this book investigates both well-known and novel approaches in this field; such as the Hukuhara differentiability and its generalizations as well as differential inclusions and Zadeh’s extension. Through a unique analysis, results of all these theories are examined and compared.