Download Free Recent Advances In Flowering Time Control Book in PDF and EPUB Free Download. You can read online Recent Advances In Flowering Time Control and write the review.

The onset of flowering is an important step during the lifetime of a flowering plant. During the past two decades, there has been enormous progress in our understanding of how internal and external (environmental) cues control the transition to reproductive growth in plants. Many flowering time regulators have been identified from the model plant Arabidopsis thaliana. Most of them are assembled in regulatory pathways, which converge to central integrators which trigger the transition of the vegetative into an inflorescence meristem. For crop cultivation, the time of flowering is of upmost importance, because it determines yield. Phenotypic variation for this trait is largely controlled by genes, which were often modified during domestication or crop improvement. Understanding the genetic basis of flowering time regulation offers new opportunities for selection in plant breeding and for genome editing and genetic modification of crop species.
Photoperiodism is the response to the length of the day that enables living organisms to adapt to seasonal changes in their environment as well as latitudinal variation. As such, it is one of the most significant andcomplex aspects of the interaction between plants and their environment and is a major factor controlling their growth and development. As the new and powerful technologies of molecular genetics are brought to bear on photoperiodism, it becomes particularly important to place new work in the context of the considerable amount of physiological information which already exists on the subject. This innovative book will be of interest to a wide range of plant scientists, from those interested in fundamental plant physiology and molecular biology to agronomists and crop physiologists. - Provides a self-sufficient account of all the important subjects and key literature references for photoperiodism - Includes research of the last twenty years since the publication of the First Edition - Includes details of molecular genetic techniques brought to bear on photoperiodism
David Dickinson is a household name, the king of the catchphrase, undisputed darling of daytime TV and a rising star. He's a respected antiques expert and exudes a taste for the finer things in life. But the road to his success has not been as smooth as his patter and he's learnt a lot at the school of hard knocks.
During the last few years, tremendous progress has been made in understanding various aspects of pre-mRNA processing. This book, with contributions from leading scientists in this area, summarizes recent advances in nuclear pre-mRNA processing in plants. It provides researchers in the field, as well as those in related areas, with an up-to-date and comprehensive, yet concise, overview of the current status and future potential of this research in understanding plant biology.
Epigenetics is a new field that explains gene expression at the chromatin structure and organization level. Three principal epigenetic mechanisms are known and hundreds of combinations among them can develop different phenotypic characteristics. DNA methylation, histone modifications and small RNAs have been identified, and their functions are being studied in order to understand the mechanisms of interaction and regulation among the different biological processes in plants. Although, fundamental epigenetic mechanisms in crop plants are beginning to be elucidated, the comprehension of the different epigenetic mechanisms, by which plant gene regulation and phenotype are modified, is a major topic to develop in the near future in order to increase crop productivity. Thus, the importance of epigenetics in improving crop productivity is undoubtedly growing. Current research on epigenetics suggest that DNA methylation, histone modifications and small RNAs are involved in almost every aspect of plant life including agronomically important traits such as flowering time, fruit development, responses to environmental factors, defense response and plant growth. The aim of this Research Topic is to explore the recent advances concerning the role of epigenetics in crop biotechnology, as well as to enhance and promote interactions among high quality researchers from different disciplines such as genetics, cell biology, pathology, microbiology, and evolutionary biology in order to join forces and decipher the epigenetic mechanisms in crop productivity.
This proceedings is a collection of 46 selected papers that were presented at the 12th International Wheat Genetics Symposium (IWGS). Since the launch of the wheat genome sequencing project in 2005, the arrival of draft genome sequences has marked a new era in wheat genetics and genomics, catalyzing rapid advancement in the field. This book provides a comprehensive review of the forefront of wheat research, across various important topics such as germplasm and genetic diversity, cytogenetics and allopolyploid evolution, genome sequencing, structural and functional genomics, gene function and molecular biology, biotic stress, abiotic stress, grain quality, and classical and molecular breeding. Following an introduction, 9 parts of the book are dedicated to each of these topics. A final, 11th part entitled “Toward Sustainable Wheat Production” contains 7 excellent papers that were presented in the 12th IWGS Special Session supported by the OECD. With rapid population growth and radical climate changes, the world faces a global food crisis and is in need of another Green Revolution to boost yields of wheat and other widely grown staple crops. Although this book focuses on wheat, many of the newly developed techniques and results presented here can be applied to other plant species with large and complex genomes. As such, this volume is highly recommended for all students and researchers in wheat sciences and related plant sciences and for those who are interested in stable food production and food security.
Plant Circadian Networks: Methods and Protocols provides a collection of protocols to investigate clock-controlled parameters including transcript and small RNA levels, promoter activity using luciferase reporters, protein levels and posttranslational modification, protein-protein interaction, in vivo DNA-protein interaction and RNA-protein interaction, cellular redox state, Ca2+ levels, and innate immune responses. Furthermore, the use of bioinformatics resources is described to evaluate high throughput data sets and to integrate the data into an overarching picture of circadian networks in the cell. Additional chapters focus on seasonal processes like flowering time control, and techniques on trees, moss and algae. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Circadian Networks: Methods and Protocols is designed not only for the chronobiology community dealing with circadian biology but also for the plant community in general.
This book provides a comprehensive review of all aspects of the molecular and cell biology of abscisic acid (ABA) metabolism, transport and signal transduction, covering our current understanding of ABA as well as research trends. The agricultural significance of ABA metabolism, transport and signal transduction is also discussed. The phytohormone ABA regulates many aspects of plant development and plays a central role in plant adaptation to environmental stresses. Over the past few decades, considerable advances have been made in the study of ABA metabolism, transport and signal transduction, greatly deepening our understanding of the underlying mechanisms of ABA function at the molecular, cell and whole-plant level and helping us improve crops’ environmental tolerance. This book provides a valuable resource for researchers and advanced students interested in plant biology and agriculture.
Plants come in myriads of shapes and colors, and the beauty of plants has fascinated mankind for thousands of years. Long before Mendel discovered the laws of heritab- ity and Darwin developed his theory on evolution, the affection for ornamental plants led people to select alleles that establish novel plant forms. Today, plant developmental biology tries to discover the mechanisms that control the establishment of specialized cell types, tissues, and organs from the fertilized egg during a plant’s life. Although the underlying processes of cell proliferation and differentiation are similar in plants and a- mals, plants are different because their development is usually open, and its outcome is not the faithful repetition of a general plan but is strongly in?uenced by environm- tal conditions. In the last few decades, plant developmental biology has pinpointed a large number of developmental regulators and their interactions and the mechanisms that govern plant development start to emerge. In part, this progress was enabled by the advance of powerful molecular tools for a few model species, most importantly Arabidopsis. This volume of the Methods in Molecular Biology series provides a collection of protocols for many of the common experimental approaches in plant developmental bi- ogy. All chapters are written in the same format as that used in the Methods in Molecular TM Biology series. Each chapter opens with a description of the basic theory behind the method being described.