Download Free Recent Advances In Differential Equations Book in PDF and EPUB Free Download. You can read online Recent Advances In Differential Equations and write the review.

This work gathers a selection of outstanding papers presented at the 25th Conference on Differential Equations and Applications / 15th Conference on Applied Mathematics, held in Cartagena, Spain, in June 2017. It supports further research into both ordinary and partial differential equations, numerical analysis, dynamical systems, control and optimization, trending topics in numerical linear algebra, and the applications of mathematics to industry. The book includes 14 peer-reviewed contributions and mainly addresses researchers interested in the applications of mathematics, especially in science and engineering. It will also greatly benefit PhD students in applied mathematics, engineering and physics.
Differential Equations serve as mathematical models for virtually any natural or physical phenomena in science and technology and has applications even in diverse fields such as economics, medicine, ecology, etc. The seminar was organized to throw light on the recent advances in the applications of differential equations and to provide a platform for sharing the knowledge with experts in the field with young students and researchers. The Researchers and educators in the field of differential equations were invited to attend and share their rich experience. As for everything else. so for a mathematical theory. beauty can be perceived but not explained.
The First Pan-China Conference on Differential Equations was held in Kunming, China in June of 1997. Researchers from around the world attended-including representatives from the US, Canada, and the Netherlands-but the majority of the speakers hailed from China and Hong Kong. This volume contains the plenary lectures and invited talks presented at that conference, and provides an excellent view of the research on differential equations being carried out in China. Most of the subjects addressed arose from actual applications and cover ordinary and partial differential equations. Topics include:
This book collects the latest results and new trends in the application of mathematics to some problems in control theory, numerical simulation and differential equations. The work comprises the main results presented at a thematic minisymposium, part of the 9th International Congress on Industrial and Applied Mathematics (ICIAM 2019), held in Valencia, Spain, from 15 to 18 July 2019. The topics covered in the 6 peer-review contributions involve applications of numerical methods to real problems in oceanography and naval engineering, as well as relevant results on switching control techniques, which can have multiple applications in industrial complexes, electromechanical machines, biological systems, etc. Problems in control theory, as in most engineering problems, are modeled by differential equations, for which standard solving procedures may be insufficient. The book also includes recent geometric and analytical methods for the search of exact solutions for differential equations, which serve as essential tools for analyzing problems in many scientific disciplines.
Surveys topics in differential equations that are associated with mathematical physics. This book includes such topics as asymptotic formulas for the ground-state energy of fermionic gas, $J$-self adjoint Dirac operators, and spectral theory of Schrodinger operators. It is suitable for mathematicians and physicists.
Recent Advances in Differential Equations contains the proceedings of a meeting held at the International Center for Theoretical Physics in Trieste, Italy, on August 24-28, 1978 under the auspices of the U.S. Army Research Office. The papers review the status of research in the field of differential equations (ordinary, partial, and functional). Both theoretical aspects (differential operators, periodic solutions, stability and bifurcation, asymptotic behavior of solutions, etc.) and problems arising from applications (reaction-diffusion equations, control problems, heat flow, etc.) are discussed. Comprised of 33 chapters, this book first examines non-cooperative trajectories of n-person dynamical games and stable non-cooperative equilibria, followed by a discussion on the determination and application of Vekua resolvents. The reader is then introduced to generalized Hopf bifurcation; some Cauchy problems arising in computational methods; and boundary value problems for pairs of ordinary differential operators. Subsequent chapters focus on degenerate evolution equations and singular optimal control; stability of neutral functional differential equations; local exact controllability of nonlinear evolution equations; and turbulence and higher order bifurcations. This monograph will be of interest to students and practitioners in the field of mathematics.
The volume is from the proceedings of the international conference held in celebration of Stanley Osher's sixtieth birthday. It presents recent developments and exciting new directions in scientific computing and partial differential equations for time dependent problems and its interplay with other fields, such as image processing, computer vision and graphics. Over the past decade, there have been very rapid developments in the field. This volume emphasizes the strong interaction of advanced mathematics with real-world applications and algorithms. The book is suitable for graduate students and research mathematicians interested in scientific computing and partial differential equations.
Delay Differential Equations: Recent Advances and New Directions cohesively presents contributions from leading experts on the theory and applications of functional and delay differential equations (DDEs). Students and researchers will benefit from a unique focus on theory, symbolic, and numerical methods, which illustrate how the concepts described can be applied to practical systems ranging from automotive engines to remote control over the Internet. Comprehensive coverage of recent advances, analytical contributions, computational techniques, and illustrative examples of the application of current results drawn from biology, physics, mechanics, and control theory. Students, engineers and researchers from various scientific fields will find Delay Differential Equations: Recent Advances and New Directions a valuable reference.
. The theory of difference equations, the methods used in their solutions and their wide applications have advanced beyond their adolescent stage to occupy a central position in Applicable Analysis. In fact, in the last five years, the proliferation of the subject is witnessed by hundreds of research articles and several monographs, two International Conferences and numerous Special Sessions, and a new Journal as well as several special issues of existing journals, all devoted to the theme of Difference Equations. Now even those experts who believe in the universality of differential equations are discovering the sometimes striking divergence between the continuous and the discrete. There is no doubt that the theory of difference equations will continue to play an important role in mathematics as a whole. In 1992, the first author published a monograph on the subject entitled Difference Equations and Inequalities. This book was an in-depth survey of the field up to the year of publication. Since then, the subject has grown to such an extent that it is now quite impossible for a similar survey, even to cover just the results obtained in the last four years, to be written. In the present monograph, we have collected some of the results which we have obtained in the last few years, as well as some yet unpublished ones.
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence bf interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mat!!ematics (TAM). The development of new courses is a natural consequence of a high level of excitement oil the research frontier as newer techniques, such as numerical and symbolic cotnputer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Math ematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface to the Second Edition This book covers those topics necessary for a clear understanding of the qualitative theory of ordinary differential equations and the concept of a dynamical system. It is written for advanced undergraduates and for beginning graduate students. It begins with a study of linear systems of ordinary differential equations, a topic already familiar to the student who has completed a first course in differential equations.