Download Free Recent Advances In Computational And Applied Mathematics Book in PDF and EPUB Free Download. You can read online Recent Advances In Computational And Applied Mathematics and write the review.

This multi-author contributed proceedings volume contains recent advances in several areas of Computational and Applied Mathematics. Each review is written by well known leaders of Computational and Applied Mathematics. The book gives a comprehensive account of a variety of topics including – Efficient Global Methods for the Numerical Solution of Nonlinear Systems of Two point Boundary Value Problems; Advances on collocation based numerical methods for Ordinary Differential Equations and Volterra Integral Equations; Basic Methods for Computing Special Functions, Melt Spinning: Optimal Control and Stability Issues; Brief survey on the CP methods for the Schrödinger equation; Symplectic Partitioned Runge-Kutta methods for the numerical integration of periodic and oscillatory problems. Recent Advances in Computational and Applied Mathematics is aimed at advanced undergraduates and researchers who are working in these fast moving fields.
This volume is an excellent resource for professionals in various areas of applications of mathematics, modeling, and computational science. It focuses on recent progress and modern challenges in these areas. The volume provides a balance between fundamental theoretical and applied developments, emphasizing the interdisciplinary nature of modern trends and detailing state-of-the-art achievements in Applied Mathematics, Modeling, and Computational Science. The chapters have been authored by international experts in their respective fields, making this book ideal for researchers in academia, practitioners, and graduate students. It can also serve as a reference in the diverse selected areas of applied mathematics, modelling, and computational sciences, and is ideal for interdisciplinary collaborations.
This book gathers selected papers presented at the conference of the Forum for Interdisciplinary Mathematics (FIM), held at Palau Macaya, Barcelona, on 18 to 20 November, 2015. The event was co-organized by the University of Barcelona (Spain), the Spanish Royal Academy of Economic and Financial Sciences (Spain) and the Forum for Interdisciplinary Mathematics (India). This instalment of the conference was presented with the title “Applied Mathematics and Computational Intelligence” and particularly focused on the use of Mathematics and Computational Intelligence techniques in a diverse range of scientific disciplines, as well as their applications in real-world problems. The book presents thirty peer-reviewed research papers, organised into four topical sections: on Mathematical Foundations; Computational Intelligence and Optimization Techniques; Modelling and Simulation Techniques; and Applications in Business and Engineering. This book will be of great interest to anyone working in the area of applied mathematics and computational intelligence and will be especially useful for scientists and graduate students pursuing research in these fields.
This book "Advanced Applications of Computational Mathematics" covers multidisciplinary studies containing advanced research in the field of computational and applied mathematics. The book includes research methodology, techniques, applications, and algorithms. The book will be very useful to advanced students, researchers and practitioners who are involved in the areas of computational and applied mathematics and engineering.
The volume contains original research papers as the Proceedings of the International Conference on Advances in Mathematics and Computing, held at Veer Surendra Sai University of Technology, Odisha, India, on 7-8 February, 2020. It focuses on new trends in applied analysis, computational mathematics and related areas. It also includes certain new models, image analysis technique, fluid flow problems, etc. as applications of mathematical analysis and computational mathematics. The volume should bring forward new and emerging topics of mathematics and computing having potential applications and uses in other areas of sciences. It can serve as a valuable resource for graduate students, researchers and educators interested in mathematical tools and techniques for solving various problems arising in science and engineering.
What is the shape of data? How do we describe flows? Can we count by integrating? How do we plan with uncertainty? What is the most compact representation? These questions, while unrelated, become similar when recast into a computational setting. Our input is a set of finite, discrete, noisy samples that describes an abstract space. Our goal is to compute qualitative features of the unknown space. It turns out that topology is sufficiently tolerant to provide us with robust tools. This volume is based on lectures delivered at the 2011 AMS Short Course on Computational Topology, held January 4-5, 2011 in New Orleans, Louisiana. The aim of the volume is to provide a broad introduction to recent techniques from applied and computational topology. Afra Zomorodian focuses on topological data analysis via efficient construction of combinatorial structures and recent theories of persistence. Marian Mrozek analyzes asymptotic behavior of dynamical systems via efficient computation of cubical homology. Justin Curry, Robert Ghrist, and Michael Robinson present Euler Calculus, an integral calculus based on the Euler characteristic, and apply it to sensor and network data aggregation. Michael Erdmann explores the relationship of topology, planning, and probability with the strategy complex. Jeff Erickson surveys algorithms and hardness results for topological optimization problems.
Computational finance is an interdisciplinary field which joins financial mathematics, stochastics, numerics and scientific computing. Its task is to estimate as accurately and efficiently as possible the risks that financial instruments generate. This volume consists of a series of cutting-edge surveys of recent developments in the field written by leading international experts. These make the subject accessible to a wide readership in academia and financial businesses. The book consists of 13 chapters divided into 3 parts: foundations, algorithms and applications. Besides surveys of existing results, the book contains many new previously unpublished results.
EACM is a comprehensive reference work covering the vast field of applied and computational mathematics. Applied mathematics itself accounts for at least 60 per cent of mathematics, and the emphasis on computation reflects the current and constantly growing importance of computational methods in all areas of applications. EACM emphasizes the strong links of applied mathematics with major areas of science, such as physics, chemistry, biology, and computer science, as well as specific fields like atmospheric ocean science. In addition, the mathematical input to modern engineering and technology form another core component of EACM.
This book focuses on the topics which provide the foundation for practicing engineering mathematics: ordinary differential equations, vector calculus, linear algebra and partial differential equations. Destined to become the definitive work in the field, the book uses a practical engineering approach based upon solving equations and incorporates computational techniques throughout.
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography