Download Free Recent Advances In Atomic Physics Book in PDF and EPUB Free Download. You can read online Recent Advances In Atomic Physics and write the review.

“French Nobel Laureate Claude Cohen-Tannoudji is second to none in his understanding of the modern theory and application of atom-photon interactions. He is also known for his lucid and accessible writing style … Advances in Atomic Physics is an impressive and wonderful-to-read reference text … Certainly researchers in the fields of atom-photon interactions and atom traps will want it as a reference on their bookshelves … A selection of chapters may be of benefit to students: the early chapters for those entering the field, the later chapters for those already doing atom-laser PhD thesis work.”Physics TodayThis book presents a comprehensive overview of the spectacular advances seen in atomic physics during the last 50 years. The authors explain how such progress was possible by highlighting connections between developments that occurred at different times. They discuss the new perspectives and the new research fields that look promising. The emphasis is placed, not on detailed calculations, but rather on physical ideas. Combining both theoretical and experimental considerations, the book will be of interest to a wide range of students, teachers and researchers in quantum and atomic physics.
This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimental basis of the subject, especially in the later chapters. It includes ample tutorial material (examples, illustrations, chapter summaries, graded problem sets).
This comprehensive volume surveys the general aspects of atomic cluster science and outlines some of its important new challenges. It begins by detailing the recent advances in the understanding of structure and the essential properties of selected atomic cluster systems, fullerenes and confined atoms. Recent advances in the field of photo processes involving atomic clusters and fullerenes are discussed, and an entire chapter is devoted to the problem of fission dynamics of atomic clusters, presenting parallels with similar processes in nuclear physics.The book goes on to describe the problems of electron-cluster collisions with special emphasis on polarization and collective excitation effects. The important area of the behavior of atomic clusters in laser fields is considered; the ionization, collective dynamics of electrons in the system in the presence of the laser field, and the laser induced dynamics of molecules and clusters are thoroughly described.Finally, a broad spectrum of problems in the area of ionic collisions with fullerenes and metal clusters is covered — from both experimental and theoretical points of view — and the results of the most recent measurements are reported. The concluding chapter takes a careful look at the interaction of an atomic cluster with a surface. The problems of cluster deposition and formation at a surface as well as collision processes involving clusters deposited at a surface are considered through a number of illustrative examples./a
The goals of atomic, molecular, and optical physics (AMO physics) are to elucidate the fundamental laws of physics, to understand the structure of matter and how matter evolves at the atomic and molecular levels, to understand light in all its manifestations, and to create new techniques and devices. AMO physics provides theoretical and experimental methods and essential data to neighboring areas of science such as chemistry, astrophysics, condensed-matter physics, plasma physics, surface science, biology, and medicine. It contributes to the national security system and to the nation's programs in fusion, directed energy, and materials research. Lasers and advanced technologies such as optical processing and laser isotope separation have been made possible by discoveries in AMO physics, and the research underlies new industries such as fiber-optics communications and laser-assisted manufacturing. These developments are expected to help the nation to maintain its industrial competitiveness and its military strength in the years to come. This report describes the field, characterizes recent advances, and identifies current frontiers of research.
Approx.300 pages Approx.300 pages
This volume covers advances in atomic frequency standards (atomic clocks) from the last several decades. It explains the use of techniques, such as laser optical pumping, coherent population trapping, laser cooling, and electromagnetic and optical trapping, in the implementation of classical microwave and optical atomic frequency standards. The authors describe the basic physics behind the operation of atomic clocks, explore new frequency standards that provide better stability and accuracy than conventional standards, and illustrate the application of atomic clocks in various areas.
Benjamin Bederson contributed to the world of physics in many areas: in atomic physics, where he achieved renown by his scattering and polarizability experiments, as the Editor-in-Chief for the American Physical Society, where he saw the introduction of electronic publishing and a remarkable growth of the APS journals, with ever increasing world-wide contributions to these highly esteemed journals, and as the originator of a number of international physics conferences in the fields of atomic and collision physics, which are continuing to this day. Bederson was also a great teacher and university administrator. The first part of this volume of Advances in Atomic, Molecular, and Optical Physics (AAMOP), entitled Benjamin Bederson: Works, Comments and Legacies, contains articles written from a personal perspective. His days at Los Alamos during World War II, working on the A bomb, are recounted by V. Fitch. H. Walther writes on the time when both were editors of AAMOP. H. Lustig, E. Merzbacher and B. Crasemann, with whom Bederson had a long-term association at the American Physical Society, contribute their experiences, one of them in the style of a poem. C.D. Rice recalls his days when he was Dean of the Faculty of Arts and Science at NYU, and the education in physics that he received from Bederson, then Dean of the Graduate School. The contribution by R. Stuewer is on Bederson as physicist historian (his latest interest). N. Lane draws some parallels between "two civic scientists, Benjamin Bederson and the other Benjamin". The papers are introduced by H.H. Stroke, in an overview of Bederson's career. A biography and bibliography are included. The second part of the volume contains scientific articles on the Casimir effects (L. Spruch), dipole polarizabilities (X. Chu, A. Dalgarno), two-electron molecular bonds revisited (G. Chen, S.A. Chin, Y. Dou, K.T. Kapale, M. Kim, A.A. Svidzinsky, K. Uretkin, H. Xiong, M.O. Scully, and resonance fluorescence of two-level atoms (H. Walther). J. Pinard and H.H. Stroke review spectroscopy with radioactive atoms. T. Miller writes on electron attachment and detachment in gases, and, with H. Gould, on recent developments in the measurement of static electric dipole polarizabilities. R. Celotta and J.A. Stroscio's most recent work on trapping and moving atoms on surfaces is contributed here. C.C. Lin and J.B. Borrard's article is on electron-impact excitation cross sections. The late Edward Pollack wrote his last paper for this volume, Atomic and Ionic Collisions. L. Vuskovic and S. Popovi ́c write on atomic interactions in a weakly ionized gas and ionizing shock waves. The last scientific article is by H. Kleinpoppen, B. Lohmann, A. Grum-Grzhimailo and U. Becker on approaches to perfect/complete scattering in atomic and molecular physics. The book ends with an essay on teaching by R.E. Collins. Benjamin Bederson - Atomic Physicist, Civil Scientist The Physical Review and Its Editor Los Alamos in World War II - View from Below Physics in Poetry Casimir Effects - Pedagogical Notes Atomic Physics in Collisions, Polarizabilities, Gases, Atomic Physics and Radioactive Atoms Molecular Bond Revisited Resonance Fluorescence in 2-Level Atoms Trapping and Moving Atoms on Surfaces