Download Free Recent Advances And Applications Of Solid State Nmr From Superconducting Physics To Molecular Biology Book in PDF and EPUB Free Download. You can read online Recent Advances And Applications Of Solid State Nmr From Superconducting Physics To Molecular Biology and write the review.

This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.
The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL). High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.
This book is for those familiar with solution-state NMR who are encountering solid-state NMR for the first time. It presents the current understanding and applications of solid-state NMR with a rigorous but readable approach, making it easy for someone who merely wishes to gain an overall impression of the subject without details. This dual requirement is met through careful construction of the material within each chapter. The book is divided into two parts: "Fundamentals" and "Further Applications." The section on Fundamentals contains relatively long chapters that deal with the basic theory and practice of solid-state NMR. The essential differences and extra scope of solid-state NMR over solution-state is dealt with in an introductory chapter. The basic techniques that all chapters rely on are collected into a second chapter to avoid unnecessary repetition later. Remaining chapters in the "Fundamentals" part deal with the major areas of solid-state NMR which all solid-state NMR spectroscopists should know about. Each begins with an overview of the topic that puts the chapter in context. The basic principles upon which the techniques in the chapter rely are explained in a separate section. Each of these chapters exemplifies the principles and techniques with the applications most commonly found in current practice. The "Further Applications" section contains a series of shorter chapters which describe the NMR techniques used in other, more specific areas. The basic principles upon which these techniques rely will be expounded only if not already in the Fundamentals part.
This book describes the advanced developments in methodology and applications of NMR spectroscopy to life science and materials science. Experts who are leaders in the development of new methods and applications of life and material sciences have contributed an exciting range of topics that cover recent advances in structural determination of biological and material molecules, dynamic aspects of biological and material molecules, and development of novel NMR techniques, including resolution and sensitivity enhancement. First, this book particularly emphasizes the experimental details for new researchers to use NMR spectroscopy and pick up the potentials of NMR spectroscopy. Second, the book is designed for those who are involved in either developing the technique or expanding the NMR application fields by applying them to specific samples. Third, the Nuclear Magnetic Resonance Society of Japan has organized this book not only for NMR members of Japan but also for readers worldwide who are interested in using NMR spectroscopy extensively.
Field-cycling NMR relaxometry is evolving into a methodology of widespread interest with recent technological developments resulting in powerful and versatile commercial instruments. Polymers, liquid crystals, biomaterials, porous media, tissue, cement and many other materials of practical importance can be studied using this technique. This book summarises the expertise of leading scientists in the area and the editor is well placed, after four decades of working in this field, to ensure a broad ranging and high quality title. Starting with an overview of the basic principles of the technique and the scope of its use, the content then develops to look at theory, instrumentation, practical limitations and applications in different systems. Newcomers to the field will find this book invaluable for successful use of the technique. Researchers already in academic and industrial settings, interested in molecular dynamics and magnetic resonance, will discover an important addition to the literature.
Solid-state NMR covers an enormous range of material types and experimental techniques. Although the basic instrumentation and techniques of solids NMR are readily accessible, there can be significant barriers, even for existing experts, to exploring the bewildering array of more sophisticated techniques. In this unique volume, a range of experts in different areas of modern solid-state NMR explain about their area of expertise, emphasising the “practical aspects” of implementing different techniques, and illustrating what questions can and cannot be addressed. Later chapters address complex materials, showing how different NMR techniques discussed in earlier chapters can be brought together to characterise important materials types. The volume as a whole focusses on topics relevant to the developing field of “NMR crystallography” – the use of solids NMR as a complement to diffraction crystallography. This book is an ideal complement to existing introductory texts and reviews on solid-state NMR. New researchers wanting to understand new areas of solid-state NMR will find each chapter to be the equivalent to spending time in the laboratory of an internationally leading expert, learning the hints and tips that make the difference between knowing about a technique and being ready to put it into action. With no equivalent on the market, it will be of interest to every solid-state NMR researcher (academic and postgraduate) working in the chemical sciences.