Download Free Receiver Designs For Ofdm Systems With Space Frequency Diversity Book in PDF and EPUB Free Download. You can read online Receiver Designs For Ofdm Systems With Space Frequency Diversity and write the review.

Orthogonal frequency-division multiplexing (OFDM) access schemes are becoming more prevalent among cellular and wireless broadband systems, accelerating the need for smaller, more energy efficient receiver solutions. Up to now the majority of OFDM texts have dealt with signal processing aspects. To address the current gap in OFDM integrated circuit (IC) instruction, Chiueh and Tsai have produced this timely text on baseband design. OFDM Baseband Receiver Design for Wireless Communications covers the gamut of OFDM technology, from theories and algorithms to architectures and circuits. Chiueh and Tsai give a concise yet comprehensive look at digital communications fundamentals before explaining modulation and signal processing algorithms in OFDM receivers. Moreover, the authors give detailed treatment of hardware issues -- from design methodology to physical IC implementation. Closes the gap between OFDM theory and implementation Enables the reader to transfer communication receiver concepts into hardware design wireless receivers with acceptable implementation loss achieve low-power designs Contains numerous figures to illustrate techniques Features concrete design examples of MC-CDMA systems and cognitive radio applications Presents theoretical discussions that focus on concepts rather than mathematical derivation Provides a much-needed single source of material from numerous papers Based on course materials for a class in digital communication IC design, this book is ideal for advanced undergraduate or post-graduate students from either VLSI design or signal processing backgrounds. New and experienced engineers in industry working on algorithms or hardware for wireless communications devices will also find this book to be a key reference.
The Second Edition of OFDM Baseband Receiver Design for Wirless Communications, this book expands on the earlier edition with enhanced coverage of MIMO techniques, additional baseband algorithms, and more IC design examples. The authors cover the full range of OFDM technology, from theories and algorithms to architectures and circuits. The book gives a concise yet comprehensive look at digital communication fundamentals before explaining signal processing algorithms in receivers. The authors give detailed treatment of hardware issues - from architecture to IC implementation. Links OFDM and MIMO theory with hardware implementation Enables the reader to transfer communication received concepts into hardware; design wireless receivers with acceptable implemntation loss; achieve low-power designs Covers the latest standards, such as DVB-T2, WiMax, LTE and LTE-A Includes more baseband algorithms, like soft-decoding algorithms such as BCJR and SOVA Expanded treatment of channel models, detection algorithms and MIMO techniques Features concrete design examples of WiMAX systems and cognitive radio apllications Companion website with lecture slides for instructors Based on materials developed for a course in digital communication IC design, this book is ideal for graduate students and researchers in VLSI design, wireless communications, and communications signal processing. Practicing engineers working on algorithms or hardware for wireless communications devices will also find this to be a key reference.
Here's a unique resource that provides you with an up-to-date understanding of how to plan, analyze, and design next-generation broadband wireless networks. This comprehensive book includes all the necessary background information needed to fully understand the material and places emphasis on practical engineering know-how that can be readily applied to designing OFDM-based systems. You find detailed discussions on everything from the physical and media access control layers, to QoS and security functions. Rather than just offering simple explanations of standards, this invaluable book takes a close look at live, real-world systems, explaining how the technical features work and why they were adopted. Moreover, the author includes his own design frameworks and rules that have been developed through his own extensive research and experience. This comprehensive reference is supported with over 170 illustrations and more than 250 equations.
The next generation mobile communication networks (4G) have the challenging target of The next generation mobile communication networks (4G) have the challenging target of providing a peak data rate of 1 Gigabit per second local area and 100 Megabit per second wide area. The ability to offer such high data rates in 100MHz bandwidth requires overall a very high spectral efficiency, and hence the need for multi-antenna techniques (MIMO) with spatial multiplexing, fast dynamic link adaptation and packet scheduling, wideband access techniques, and most likely non-contention based spectrum sharing among multiple operators. Many of these required technology components and techniques are well researched and established. Adaptive PHY-MAC Design for Broadband Wireless Systems explains how one can integrate and optimise their use in providing the target cell data rates with high availability. The authors address the ability to cope with interference and enhanced physical layer processing, and simultaneously, the multifaceted system level design. Focus is also on the selection of technology components and techniques, which leads to the highest spectral efficiency and peak data rate availability with reasonable Quality of Service (QoS) support, such as improved outage scenario, reduced delay, guaranteed bit rate, etc.In short, this book will answer questions such as, how individual techniques relate to each other, how can we benefit the gains by suitable combinations of different technologies and how to choose different technological solutions in different scenarios, etc.The next generation mobile communication networks (4G) have the challenging target of The next generation mobile communication networks (4G) have the challenging target of providing a peak data rate of 1 Gigabit per second local area and 100 Megabit per second wide area.
This book introduces the reader to the MIMO-OFDM system, in Rayleigh frequency selective-channels. Orthogonal frequency division multiplexing (OFDM) has been adopted in the wireless local-area network standards IEEE 802.11a due to its high spectral efficiency and ability to deal with frequency selective fading. The combination of OFDM with spectral efficient multiple antenna techniques makes the OFDM a good candidate to overcome the frequency selective problems.
Now available in a three-volume set, this updated and expanded edition of the bestselling The Digital Signal Processing Handbook continues to provide the engineering community with authoritative coverage of the fundamental and specialized aspects of information-bearing signals in digital form. Encompassing essential background material, technical details, standards, and software, the second edition reflects cutting-edge information on signal processing algorithms and protocols related to speech, audio, multimedia, and video processing technology associated with standards ranging from WiMax to MP3 audio, low-power/high-performance DSPs, color image processing, and chips on video. Drawing on the experience of leading engineers, researchers, and scholars, the three-volume set contains 29 new chapters that address multimedia and Internet technologies, tomography, radar systems, architecture, standards, and future applications in speech, acoustics, video, radar, and telecommunications. This volume, Wireless, Networking, Radar, Sensor Array Processing, and Nonlinear Signal Processing, provides complete coverage of the foundations of signal processing related to wireless, radar, space–time coding, and mobile communications, together with associated applications to networking, storage, and communications.
Eine vielversprechende Technologie zur Maximierung der Bandbreiteneffizienz in der breitbandigen drahtlosen Kommunikation ist die Raum-Zeit-Kodierung. Theorie und Praxis verbindend, ist dieses Buch die erste umfassende Diskussion von Grundlagen und designorientierten Aspekten von Raum-Zeit-Codes. Single-Carrier und Multi-Carrier-Übertragungen für Einzel- und Mehrnutzerkommunikation werden behandelt.
The new edition of this popular textbook keeps its structure, introducing the advanced topics of: (i) wireless communications, (ii) free-space optical (FSO) communications, (iii) indoor optical wireless (IR) communications, and (iv) fiber-optics communications, but thoroughly updates the content for new technologies and practical applications. The author presents fundamental concepts, such as propagation principles, modulation formats, channel coding, diversity principles, MIMO signal processing, multicarrier modulation, equalization, adaptive modulation and coding, detection principles, and software defined transmission, first describing them and then following up with a detailed look at each particular system. The book is self-contained and structured to provide straightforward guidance to readers looking to capture fundamentals and gain theoretical and practical knowledge about wireless communications, free-space optical communications, and fiber-optics communications, all which can be readily applied in studies, research, and practical applications. The textbook is intended for an upper undergraduate or graduate level courses in fiber-optics communication, wireless communication, and free-space optical communication problems, an appendix with all background material needed, and homework problems. In the second edition, in addition to the existing chapters being updated and problems being inserted, one new chapter has been added, related to the physical-layer security thus covering both security and reliability issues. New material on 5G and 6G technologies has been added in corresponding chapters.
MIMO-OFDM for LTE, WIFI and WIMAX: Coherent versus Non-Coherent and Cooperative Turbo-Transceivers provides an up-to-date portrayal of wireless transmission based on OFDM techniques augmented with Space-Time Block Codes (STBCs) and Spatial-Division Multiple Access (SDMA). The volume also offers an in-depth treatment of cutting-edge Cooperative Communications. This monograph collates the latest techniques in a number of specific design areas of turbo-detected MIMO-OFDM wireless systems. As a result a wide range of topical subjects are examined, including channel coding and multiuser detection (MUD), with a special emphasis on optimum maximum-likelihood (ML) MUDs, reduced-complexity genetic algorithm aided near-ML MUDs and sphere detection. The benefits of spreading codes as well as joint iterative channel and data estimation are only a few of the radical new features of the book. Also considered are the benefits of turbo and LDPC channel coding, the entire suite of known joint coding and modulation schemes, space-time coding as well as SDM/SDMA MIMOs within the context of various application examples. The book systematically converts the lessons of Shannon's information theory into design principles applicable to practical wireless systems; the depth of discussions increases towards the end of the book. Discusses many state-of-the-art topics important to today's wireless communications engineers. Includes numerous complete system design examples for the industrial practitioner. Offers a detailed portrayal of sphere detection. Based on over twenty years of research into OFDM in the context of various applications, subsequently presenting comprehensive bibliographies.
As a result of higher frequencies and increased user mobility, researchers and systems designers are shifting their focus from time-invariant models to channels that vary within a block. Wireless Communications Over Rapidly Time-Varying Channels explains the latest theoretical advances and practical methods to give an understanding of rapidly time varying channels, together with performance trade-offs and potential performance gains, providing the expertise to develop future wireless systems technology. As well as an overview of the issues of developing wireless systems using time-varying channels, the book gives extensive coverage to methods for estimating and equalizing rapidly time-varying channels, including a discussion of training data optimization, as well as providing models and transceiver methods for time-varying ultra-wideband channels. - An introduction to time-varying channel models gives in a nutshell the important issues of developing wireless systems technology using time-varying channels - Extensive coverage of methods for estimating and equalizing rapidly time-varying channels, including a discussion of training data optimization, enables development of high performance wireless systems - Chapters on transceiver design for OFDM and receiver algorithms for MIMO communication channels over time-varying channels, with an emphasis on modern iterative turbo-style architectures, demonstrates how these important technologies can optimize future wireless systems