Download Free Receiver Design For High Spectral Efficiency Communication Systems In Beyond 5g Book in PDF and EPUB Free Download. You can read online Receiver Design For High Spectral Efficiency Communication Systems In Beyond 5g and write the review.

This book focuses on the receiver design issue in high spectral efficiency communication systems, which is one of the main research directions in beyond 5G and 6G era. In particular, this book studies two technologies to improve the spectral efficiency, i.e., FTN signaling which transmits more data information in the same time period and NOMA scheme which supports more users with the same resource elements. Different commonly used channel propagation conditions are considered, and advanced signal processing algorithms have been developed for designing receivers, which is suitable for low-complexity receiver design in engineering practice. Moreover, this book discusses possible solutions to further increase spectral efficiency and propose practical receivers in such scenarios. It benefits researchers, engineers, and students in the fields of wireless communications and signal processing.
This book presents the fundamental concepts, recent advancements, and opportunities for future research in various key enabling technologies in next-generation wireless communications. The book serves as a comprehensive source of information in all areas of wireless communications with a particular emphasis on physical (PHY) layer techniques related to 5G wireless systems and beyond. In particular, this book focuses on different emerging techniques that can be adopted in 5G wireless networks. Some of those techniques include massive-MIMO, mm-Wave communications, spectrum sharing, device-to-device (D2D) and vehicular to anything (V2X) communications, radio-frequency (RF) based energy harvesting, and NOMA. Subsequent chapters cover the fundamentals and PHY layer design aspects of different techniques that can be useful for the readers to get familiar with the emerging technologies and their applications.
This book discusses terahertz (THz) wireless communication, particularly for 6G enabling technologies, including antenna design, and channel modeling with channel characteristics for the success of reliable 6G wireless communication. The authors describe THz microstrip antenna technologies with different substrates and introduce some useful substrates to reduce the conductor and substrate losses at the THz frequencies. The discussion also includes the design of the THz unit-cell microstrip antenna and the techniques to boost the microstrip antennas' gain, directivity, and impedance bandwidth (BW), which influence the wireless communication range which is highly affected by the path losses of atmospheric conditions, and transmit and receive data rates, respectively. Moreover, this book discusses the multi-beam and beamforming THz antenna technologies with the multi-user-multiple-input-multiple-output (MU-MIMO) features. Additionally, this book describes the reconfigurable capabilities, artificial intelligence, machine learning, and deep learning technologies that will influence the success of 6G wireless communication and the authors suggest a remedy for integrating multiple radios into the system-on-chip (SoC) design.
5G and Beyond Wireless Communication Networks A comprehensive and up-to-date survey of 5G technologies and applications In 5G and Beyond Wireless Communication Networks, a team of distinguished researchers deliver an expert treatment of the technical details of modern 5G wireless networks and the performance gains they make possible. The book examines the recent progress in research and development in the area, covering related topics on fundamental 5G requirements and its enabling technologies. The authors survey 5G service architecture and summarize enabling technologies, including highly dense small cell and heterogeneous networks, device-to-device communications underlaying cellular networks, fundamentals of non-orthogonal multiple access in 5G new radio and its applications. Readers will also find: A thorough introduction to 5G wireless networks, including discussions of anticipated growth in mobile data traffic Comprehensive explorations of dense small cell and heterogeneous networks Practical discussions of the most recent developments in 5G research and enabling technologies Recent advancement of non-orthogonal multiple access and its role in current and future wireless systems Perfect for graduate students, professors, industry professionals, and engineers with an interest in wireless communication, 5G and Beyond Wireless Communication Networks will also benefit undergraduate and graduate students and researchers seeking an up-to-date and accessible new resource about 5G networks.
Multiple-input, multiple-output (MIMO), which transmits multiple data streams via multiple antenna elements, is one of the most attractive technologies in the wireless communication field. Its extension, called ‘massive MIMO’ or ‘large-scale MIMO’, in which base station has over one hundred of the antenna elements, is now seen as a promising candidate to realize 5G and beyond, as well as 6G mobile communications. It has been the first decade since its fundamental concept emerged. This Special Issue consists of 19 papers and each of them focuses on a popular topic related to massive MIMO systems, e.g. analog/digital hybrid signal processing, antenna fabrication, and machine learning incorporation. These achievements could boost its realization and deepen the academic and industrial knowledge of this field.
This book provides insights into the Third International Conference on Intelligent Systems and Signal Processing (eISSP 2020) held By Electronics & Communication Engineering Department of G H Patel College of Engineering & Technology, Gujarat, India, during 28–30 December 2020. The book comprises contributions by the research scholars and academicians covering the topics in signal processing and communication engineering, applied electronics and emerging technologies, Internet of Things (IoT), robotics, machine learning, deep learning and artificial intelligence. The main emphasis of the book is on dissemination of information, experience and research results on the current topics of interest through in-depth discussions and contribution of researchers from all over world. The book is useful for research community, academicians, industrialists and postgraduate students across the globe.
Learn how to build efficient, simple, high performance indoor optical wireless communication systems based on visible and infrared light.
5G and Beyond Wireless Networks: Technology, Network Deployments, and Materials for Antenna Design offers a comprehensive overview of 5G and beyond 5G wireless networks along with emerging technologies that support the design and development of wireless networks. It also includes discussions on various materials used for practical antenna design which are suitable for 5G, beyond 5G applications, and cell-free massive MIMO systems. The book discusses the latest techniques used in 5G and beyond 5G (B5G) communication, such as non-orthogonal multiple access (NOMA), device-to-device (D2D) communication, 6G ultra-dense O-RAN, rate-splitting multiple access (RSMA), simultaneous wireless information and power transfer (SWIPT), massive multiple input multiple output (mMIMO), and cell-free massive MIMO systems, which are explained in detail for 5G and beyond cellular networks. The description of NOMA and their benefit for 5G and beyond networks is also addressed along with D2D communication for next generation cellular networks. RSMA technique is also explained for 6G communication. Detailed descriptions for the design and development of 5G and beyond networks over various techniques are included. The materials specification to design antenna for 5G application are also given. The role of metalens in designing effective antennas and material specifications for 5G applications is explained in this book. Apart from the above emerging topics, this book also gives ideas about intelligent communication, Internet of Multimedia Things (IOMT), millimeter-wave MIMO-UFMC, and fog computing cloud networks. The last chapter gives details about the legal frameworks for 5G technology for responsible and sustainable deployment. Overall, this book may benefit network design engineers and researchers working in the area of next generation cellular networks. The contents of this book will be helpful for young researchers and master students, and network design engineers who are working in the area of next generation cellular networks.
This book focuses on soft computing and how it can be applied to solve real-world problems arising in various domains, ranging from medicine and healthcare, to supply chain management, image processing, and cryptanalysis. It gathers high-quality papers presented at the International Conference on Soft Computing: Theories and Applications (SoCTA 2021), organized online. The book offers valuable insights into soft computing for teachers and researchers alike; the book will inspire further research in this dynamic field.
This book highlights the comprehensive knowledge and latest progress in broadband terahertz (THz) technology. THz communication technology is believed to be one of the major choices that succeed the fifth-generation (5G) communication technology. With years of efforts, the author’s team has created a number of world records in the generation, transmission, and reception of ultra wideband THz signal, realizing the MIMO transmission and reception of THz communication, the THz signal transmission with communication capacity of 1 Tbit / s, and the optical fiber and THz integrated transmission. A variety of linear and nonlinear algorithms for multi-carrier and single-carrier THz communication systems are developed, which greatly improves the transmission performance of broadband systems. The book covers in details the broadband THz signal generation, long-distance transmission, and high sensitivity detection. It is of great reference value for researchers, engineers, and graduate students in optical and wireless communications.