Download Free Reasoning In Physics Book in PDF and EPUB Free Download. You can read online Reasoning In Physics and write the review.

For a meaningful understanding of physics, it is necessary to realise that this corpus of knowledge operates in a register different from natural thought. This book aims at situating the main trends of common reasoning in physics with respect to some essential aspects of accepted theory. It analyses a great many research results based on studies of pupils and students at various academic levels, involving a range of physical situations. It shows the impressive generality of the trends of common thought, as well as their resistance to teaching. The book's main focus is to underline to what extent natural thought is organised. As a result of this mapping out of trends of reasoning, some suggestions for teaching are presented; these have already influenced recent curricula in France. This book is intended for teachers and teacher trainers principally, but students can also benefit from it to improve their understanding of physics and of their own ways of reasoning.
This book argues, partly through detailed case studies, for the importance of causal reasoning in physics.
This book speaks about physics discoveries that intertwine mathematical reasoning, modeling, and scientific inquiry. It offers ways of bringing together the structural domain of mathematics and the content of physics in one coherent inquiry. Teaching and learning physics is challenging because students lack the skills to merge these learning paradigms. The purpose of this book is not only to improve access to the understanding of natural phenomena but also to inspire new ways of delivering and understanding the complex concepts of physics. To sustain physics education in college classrooms, authentic training that would help develop high school students’ skills of transcending function modeling techniques to reason scientifically is needed and this book aspires to offer such training The book draws on current research in developing students’ mathematical reasoning. It identifies areas for advancements and proposes a conceptual framework that is tested in several case studies designed using that framework. Modeling Newton’s laws using limited case analysis, Modeling projectile motion using parametric equations and Enabling covariational reasoning in Einstein formula for the photoelectric effect represent some of these case studies. A wealth of conclusions that accompany these case studies, drawn from the realities of classroom teaching, is to help physics teachers and researchers adopt these ideas in practice.
In this highly individual, and truly novel, approach to theoretical reasoning in physics, the author has provided a course that illuminates the subject from the standpoint of real physics as practised by research scientists. Professor Longair gives the basic insights, attitudes, and techniques that are the tools of the professional physicist, in a manner that conveys the intellectual excitement and beauty of the subject. The book is intended to be a supplement to more traditional courses for physics undergraduates, and the author assumes that his readers already have some knowledge of the main branches of physics. As the story unfolds, much of the core material of an undergraduate course in physics is reviewed from a more mature point of view. This is not, in fact, a substitute for existing texts. Rather it goes beyond them by improving the student's appreciation of the subject.
This book gives a rigorous yet 'physics-focused' introduction to mathematical logic that is geared towards natural science majors. We present the science major with a robust introduction to logic, focusing on the specific knowledge and skills that will unavoidably be needed in calculus topics and natural science topics in general (rather than taking a philosophical math fundamental oriented approach that is commonly found in mathematical logic textbooks).
Much has been written on the role of causal notions and causal reasoning in the so-called 'special sciences' and in common sense. But does causal reasoning also play a role in physics? Mathias Frisch argues that, contrary to what influential philosophical arguments purport to show, the answer is yes. Time-asymmetric causal structures are as integral a part of the representational toolkit of physics as a theory's dynamical equations. Frisch develops his argument partly through a critique of anti-causal arguments and partly through a detailed examination of actual examples of causal notions in physics, including causal principles invoked in linear response theory and in representations of radiation phenomena. Offering a new perspective on the nature of scientific theories and causal reasoning, this book will be of interest to professional philosophers, graduate students, and anyone interested in the role of causal thinking in science.
This book introduces college students and other readers to the uses of probability and statistics in the physical sciences, focusing on thermal and statistical physics and touching upon quantum physics. Widely praised as beautifully written and thoughtful, Reasoning About Luck explains concepts in a way that readers can understand and enjoy, even students who are not specializing in science and those outside the classroom — only some familiarity with basic algebra is necessary. Attentive readers will come away with a solid grasp of many of the basic concepts of physics and some excellent insights into the way physicists think and work. "If students who are not majoring in science understood no more physics than that presented by Ambegaokar, they would have a solid basis for thinking about physics and the other sciences." — Physics Today. "There is a real need for rethinking how we teach thermal physics—at all levels, but especially to undergraduates. Professor Ambegaokar has done just that, and given us an outstanding and ambitious textbook for nonscience majors. I find Professor Ambegaokar's style throughout the book to be graceful and witty, with a nice balance of both encouragement and admonishment." — American Journal of Physics.
Read this book if you care about students really understanding physics and getting genuine intellectual satisfaction from doing so. Read it too if you fear that this goal is out of reach – you may be surprised! Laurence Viennot here shows ways to deal with the awkward fact that common sense thinking is often not the same as scientific thinking. She analyses examples of frequent and widespread errors and confusions, which provide a real eye-opener for the teacher. More than that, she shows ways to avoid and overcome them. The book argues against over-emphasis on “fun” applications, demonstrating that students also enjoy and value clear thinking. The book has three parts: • making sense of special scientific ways of reasoning (words, images, functions) • making connections between very different topics, each illuminating the other • simplifying, looking for consistency and avoiding incoherent over-simplification The book is enhanced with supplementary online materials that will allow readers to further expand their teaching or research interests and think about them more deeply.