Download Free Real Time Reconstruction Of Static And Dynamic Scenes Book in PDF and EPUB Free Download. You can read online Real Time Reconstruction Of Static And Dynamic Scenes and write the review.

Viele Anwendungen des Maschinellen Sehens benötigen die automatische Analyse und Rekonstruktion von statischen und dynamischen Szenen. Deshalb ist die automatische Analyse von dreidimensionalen Szenen und Objekten ein Bereich der intensiv erforscht wird. Die meisten Ansätze konzentrieren sich auf die Rekonstruktion statischer Szenen, da die Rekonstruktion nicht-statischer Geometrien viel herausfordernder ist und voraussetzt, dass dreidimensionale Szeneninformation mit hoher zeitlicher Auflösung verfügbar ist. Statische Szenenanalyse wird beispielsweise in der autonomen Navigation, für die Überwachung und für die Erhaltung des Kulturerbes eingesetzt. Andererseits eröffnet die Analyse und Rekonstruktion nicht-statischer Geometrie viel mehr Möglichkeiten, nicht nur für die bereits erwähnten Anwendungen. In der Produktion von Medieninhalten für Film und Fernsehen kann die Analyse und die Aufnahme und Wiedergabe von vollständig dreidimensionalen Inhalten verwendet werden um neue Ansichten realer Szenen zu erzeugen oder echte Schauspieler durch animierte virtuelle Charaktere zu ersetzen. Die wichtigste Voraussetzung für die Analyse von dynamischen Inhalten ist die Verfügbarkeit von zuverlässigen dreidimensionalen Szeneninformationen. Um die Entfernung von Punkten in der Szene zu bestimmen wurden meistens Stereo-Verfahren eingesetzt, aber diese Verfahren benötigen viel Rechenzeit und erreichen in Echtzeit nicht die benötigte Qualität. In den letzten Jahren haben die so genannten Laufzeitkameras das Stadium der Prototypen verlassen und sind jetzt in der Lage dichte Tiefeninformationen in vernünftiger Qualität zu einem vernünftigen Preis zu liefern. Diese Arbeit untersucht die Eignung dieser Kameras für die Analyse nicht-statischer dreidimensionaler Szenen. Bevor eine Laufzeitkamera für die Analyse eingesetzt werden kann muss sie intern und extern kalibriert werden. Darüber hinaus leiden Laufzeitkameras an systematischen Fehlern bei der Entfernungsmessung, bedingt durch ihr
This book focuses on the fundamentals and recent advances in RGB-D imaging as well as covering a range of RGB-D applications. The topics covered include: data acquisition, data quality assessment, filling holes, 3D reconstruction, SLAM, multiple depth camera systems, segmentation, object detection, salience detection, pose estimation, geometric modelling, fall detection, autonomous driving, motor rehabilitation therapy, people counting and cognitive service robots. The availability of cheap RGB-D sensors has led to an explosion over the last five years in the capture and application of colour plus depth data. The addition of depth data to regular RGB images vastly increases the range of applications, and has resulted in a demand for robust and real-time processing of RGB-D data. There remain many technical challenges, and RGB-D image processing is an ongoing research area. This book covers the full state of the art, and consists of a series of chapters by internationally renowned experts in the field. Each chapter is written so as to provide a detailed overview of that topic. RGB-D Image Analysis and Processing will enable both students and professional developers alike to quickly get up to speed with contemporary techniques, and apply RGB-D imaging in their own projects.
Abstract Biological vision is a rather fascinating domain of research. Scientists of various origins like biology, medicine, neurophysiology, engineering, math ematics, etc. aim to understand the processes leading to visual perception process and at reproducing such systems. Understanding the environment is most of the time done through visual perception which appears to be one of the most fundamental sensory abilities in humans and therefore a significant amount of research effort has been dedicated towards modelling and repro ducing human visual abilities. Mathematical methods play a central role in this endeavour. Introduction David Marr's theory v^as a pioneering step tov^ards understanding visual percep tion. In his view human vision was based on a complete surface reconstruction of the environment that was then used to address visual subtasks. This approach was proven to be insufficient by neuro-biologists and complementary ideas from statistical pattern recognition and artificial intelligence were introduced to bet ter address the visual perception problem. In this framework visual perception is represented by a set of actions and rules connecting these actions. The emerg ing concept of active vision consists of a selective visual perception paradigm that is basically equivalent to recovering from the environment the minimal piece information required to address a particular task of interest.
This book is focused on the recent advances in computer vision methodologies and technical solutions using conventional and intelligent paradigms. The Contributions include: · Morphological Image Analysis for Computer Vision Applications. · Methods for Detecting of Structural Changes in Computer Vision Systems. · Hierarchical Adaptive KL-based Transform: Algorithms and Applications. · Automatic Estimation for Parameters of Image Projective Transforms Based on Object-invariant Cores. · A Way of Energy Analysis for Image and Video Sequence Processing. · Optimal Measurement of Visual Motion Across Spatial and Temporal Scales. · Scene Analysis Using Morphological Mathematics and Fuzzy Logic. · Digital Video Stabilization in Static and Dynamic Scenes. · Implementation of Hadamard Matrices for Image Processing. · A Generalized Criterion of Efficiency for Telecommunication Systems. The book is directed to PhD students, professors, researchers and software developers working in the areas of digital video processing and computer vision technologies.
The migration of immersive media towards telecommunication applications is advancing rapidly. Impressive progress in the field of media compression, media representation, and the larger and ever increasing bandwidth available to the customer, will foster the introduction of these services in the future. One of the key components for the envisioned applications is the development from two-dimensional towards three-dimensional audio-visual communications. With contributions from key experts in the field, 3D Videocommunication: provides a complete overview of existing systems and technologies in 3D video communications and provides guidance on future trends and research; considers all aspects of the 3D videocommunication processing chain including video coding, signal processing and computer graphics; focuses on the current state-of-the-art and highlights the directions in which the technology is likely to move; discusses in detail the relevance of 3D videocommunication for telepresence systems and immersive media; and provides an exhaustive bibliography for further reading. Researchers and students interested in the field of 3D audio-visual communications will find 3D Videocommunication a valuable resource, covering a broad overview of the current state-of-the-art. Practical engineers from industry will also find it a useful tool in envisioning and building innovative applications.
This book provides an overview of research achievements by industry experts and academic scientists in the subject area of Optoelectronics Technology and Industry. It covers a broad field ranging from Laser Technology and Applications, Optical Communications, Optoelectronic Devices and Integration, Energy Harvesting, to Medical and Biological Applications. Authored by highly-regarded researchers, contributing a wealth of knowledge on Photonics and Optoelectronics, this comprehensive collection of papers offers insight into innovative technologies, recent advances and future trends needed to develop effective research and manage projects. Researchers will benefit considerably when applying the technical information covered in this book.
This book reports recent advances in the use of pattern recognition techniques for computer and robot vision. The sciences of pattern recognition and computational vision have been inextricably intertwined since their early days, some four decades ago with the emergence of fast digital computing. All computer vision techniques could be regarded as a form of pattern recognition, in the broadest sense of the term. Conversely, if one looks through the contents of a typical international pattern recognition conference proceedings, it appears that the large majority (perhaps 70-80%) of all pattern recognition papers are concerned with the analysis of images. In particular, these sciences overlap in areas of low level vision such as segmentation, edge detection and other kinds of feature extraction and region identification, which are the focus of this book.
Light field is one of the most representative image-based rendering techniques that generate novel virtual views from images instead of 3D models. The light field capture and rendering process can be considered as a procedure of sampling the light rays in the space and interpolating those in novel views. As a result, light field can be studied as a high-dimensional signal sampling problem, which has attracted a lot of research interest and become a convergence point between computer graphics and signal processing, and even computer vision. This lecture focuses on answering two questions regarding light field sampling, namely how many images are needed for a light field, and if such number is limited, where we should capture them. The book can be divided into three parts. First, we give a complete analysis on uniform sampling of IBR data. By introducing the surface plenoptic function, we are able to analyze the Fourier spectrum of non-Lambertian and occluded scenes. Given the spectrum, we also apply the generalized sampling theorem on the IBR data, which results in better rendering quality than rectangular sampling for complex scenes. Such uniform sampling analysis provides general guidelines on how the images in IBR should be taken. For instance, it shows that non-Lambertian and occluded scenes often require a higher sampling rate. Next, we describe a very general sampling framework named freeform sampling. Freeform sampling handles three kinds of problems: sample reduction, minimum sampling rate to meet an error requirement, and minimization of reconstruction error given a fixed number of samples. When the to-be-reconstructed function values are unknown, freeform sampling becomes active sampling. Algorithms of active sampling are developed for light field and show better results than the traditional uniform sampling approach. Third, we present a self-reconfigurable camera array that we developed, which features a very efficient algorithm for real-time rendering and the ability of automatically reconfiguring the cameras to improve the rendering quality. Both are based on active sampling. Our camera array is able to render dynamic scenes interactively at high quality. To the best of our knowledge, it is the first camera array that can reconfigure the camera positions automatically.