Download Free Real Time Optimization Book in PDF and EPUB Free Download. You can read online Real Time Optimization and write the review.

This book is a printed edition of the Special Issue "Real-Time Optimization" that was published in Processes
An up-close look at the theory behind and application of extremum seeking Originally developed as a method of adaptive control for hard-to-model systems, extremum seeking solves some of the same problems as today's neural network techniques, but in a more rigorous and practical way. Following the resurgence in popularity of extremum-seeking control in aerospace and automotive engineering, Real-Time Optimization by Extremum-Seeking Control presents the theoretical foundations and selected applications of this method of real-time optimization. Written by authorities in the field and pioneers in adaptive nonlinear control systems, this book presents both significant theoretic value and important practical potential. Filled with in-depth insight and expert advice, Real-Time Optimization by Extremum-Seeking Control: * Develops optimization theory from the points of dynamic feedback and adaptation * Builds a solid bridge between the classical optimization theory and modern feedback and adaptation techniques * Provides a collection of useful tools for problems in this complex area * Presents numerous applications of this powerful methodology * Demonstrates the immense potential of this methodology for future theory development and applications Real-Time Optimization by Extremum-Seeking Control is an important resource for both students and professionals in all areas of engineering-electrical, mechanical, aerospace, chemical, biomedical-and is also a valuable reference for practicing control engineers.
Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs--and the requirement for rapid solution--pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Audience: readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in "offline" optimization contexts and are interested in moving to "online" optimization.
In its thousands of years of history, mathematics has made an extraordinary ca reer. It started from rules for bookkeeping and computation of areas to become the language of science. Its potential for decision support was fully recognized in the twentieth century only, vitally aided by the evolution of computing and communi cation technology. Mathematical optimization, in particular, has developed into a powerful machinery to help planners. Whether costs are to be reduced, profits to be maximized, or scarce resources to be used wisely, optimization methods are available to guide decision making. Opti mization is particularly strong if precise models of real phenomena and data of high quality are at hand - often yielding reliable automated control and decision proce dures. But what, if the models are soft and not all data are around? Can mathematics help as well? This book addresses such issues, e. g. , problems of the following type: - An elevator cannot know all transportation requests in advance. In which order should it serve the passengers? - Wing profiles of aircrafts influence the fuel consumption. Is it possible to con tinuously adapt the shape of a wing during the flight under rapidly changing conditions? - Robots are designed to accomplish specific tasks as efficiently as possible. But what if a robot navigates in an unknown environment? - Energy demand changes quickly and is not easily predictable over time. Some types of power plants can only react slowly.
This monograph provides foundations, methods, guidelines and examples for monitoring and improving resource efficiency during the operation of processing plants and for improving their design. The measures taken to improve their energy and resource efficiency are strongly influenced by regulations and standards which are covered in Part I of this book. Without changing the actual processing equipment, the way how the processes are operated can have a strong influence on the resource efficiency of the plants and this potential can be exploited with much smaller investments than needed for the introduction of new process technologies. This aspect is the focus of Part II. In Part III we discuss physical changes of the process technology such as heat integration, synthesis and realization of optimal processes, and industrial symbiosis. The last part deals with the people that are needed to make these changes possible and discusses the path towards a resource efficiency culture. Written with industrial solutions in mind, this text will benefit practitioners as well as the academic community.
This book considers advanced real-time optimisation methods for 5G and beyond networks. The authors discuss the fundamentals, technologies, practical questions and challenges around real-time optimisation of 5G and beyond communications, providing insights into relevant theories, models and techniques.
Leading experts provide the theoretical underpinnings of the subject plus tutorials on a wide range of applications, from automatic code generation to robust broadband beamforming. Emphasis on cutting-edge research and formulating problems in convex form make this an ideal textbook for advanced graduate courses and a useful self-study guide.
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.
Optimization is a serious issue, touching many aspects of our life and activity. But it has not yet been completely absorbed in our culture. In this book the authors point out how relatively young even the word “model” is. On top of that, the concept is rather elusive. How to deal with a technology that ?nds applicationsinthingsasdi?erentaslogistics,robotics,circuitlayout,?nancial deals and tra?c control? Although, during the last decades, we made signi?cant progress, the broad public remained largely unaware of that. The days of John von Neumann, with his vast halls full of people frantically working mechanical calculators are long gone. Things that looked completely impossible in my youth, like solving mixed integer problems are routine by now. All that was not just achieved by ever faster and cheaper computers, but also by serious progress in mathematics. But even in a world that more and more understands that it cannot a?ord to waste resources, optimization remains to a large extent unknown. R It is quite logical and also fortunate that SAP , the leading supplier of enterprise management systems has embedded an optimizer in his software. The authors have very carefully investigated the capabilities and the limits of APO. Remember that optimization is still a work in progress. We do not have the tool that does everything for everybody.
Continuous pharmaceutical manufacturing is currently receiving much interest from industry and regulatory authorities, with the joint aim of allowing rapid access of novel therapeutics and existing medications to the public, without compromising high quality. Research groups from different academic institutions have significantly contributed to this field with an immense amount of published research addressing a variety of topics related to continuous processing. The book is structured to have individual chapters on the different continuous unit operations involved in drug substance and drug product manufacturing. A wide spectrum of topics are covered, including basic principles of continuous manufacturing, applications of continuous flow chemistry in drug synthesis, continuous crystallization, continuous drying, feeders and blenders, roll compaction and continuous wet granulation.The underlying theme for each of these chapters is to present to the reader the recent advances in modeling, experimental investigations and equipment design as they pertain to each individual unit operation. The book also includes chapters on quality by design (QbD) and process analytical technology (PAT) for continuous processing, process control strategies including new concepts of quality-by-control (QbC), real-time process management and plant optimization, business and supply chain considerations related to continuous manufacturing as well as safety guidelines related to continuous chemistry. A separate chapter is dedicated to discussing regulatory aspects of continuous manufacturing, with description of current regulatory environment quality/GMP aspects, as well as regulatory gaps and challenges. Our aim from publishing this book is to make it a valuable reference for readers interested in this topic, with a desire to gain a fundamental understanding of engineering principles and mechanistic studies utilized in understanding and developing continuous processes. In addition, our advanced readers and practitioners in this field will find that the technical content of Continuous Pharmaceutical Processing is at the forefront of recent technological advances, with coverage of future prospects and challenges for this technology.