Download Free Real Time Biomechanical Modeling For Intraoperative Soft Tissue Registration Book in PDF and EPUB Free Download. You can read online Real Time Biomechanical Modeling For Intraoperative Soft Tissue Registration and write the review.

Computer assisted surgery systems intraoperatively support the surgeon by providing information on the location of hidden risk and target structures during surgery. However, soft tissue deformations make intraoperative registration (and thus intraoperative navigation) difficult. In this work, a novel, biomechanics based approach for real-time soft tissue registration from sparse intraoperative sensor data such as stereo endoscopic images is presented to overcome this problem.
This volume focuses on the biomechanical modeling of biological tissues in the context of Computer Assisted Surgery (CAS). More specifically, deformable soft tissues are addressed since they are the subject of the most recent developments in this field. The pioneering works on this CAS topic date from the 1980's, with applications in orthopaedics and biomechanical models of bones. More recently, however, biomechanical models of soft tissues have been proposed since most of the human body is made of soft organs that can be deformed by the surgical gesture. Such models are much more complicated to handle since the tissues can be subject to large deformations (non-linear geometrical framework) as well as complex stress/strain relationships (non-linear mechanical framework). Part 1 of the volume presents biomechanical models that have been developed in a CAS context and used during surgery. This is particularly new since most of the soft tissues models already proposed concern Computer Assisted Planning, with a pre-operative use of the models. Then, the volume addresses the two key issues raised for an intra-operative use of soft tissues models, namely (Part 2) “how to estimate the in vivo mechanical behavior of the tissues?” (i.e. what are the values of the mechanical parameters that can deliver realistic patient-specific behavior?) and (Part 3) “how to build a modeling platform that provides generic real-time (or at least interactive-time) numerical simulations?”
This new edition presents an authoritative account of the current state of brain biomechanics research for engineers, scientists and medical professionals. Since the first edition in 2011, this topic has unquestionably entered into the mainstream of biomechanical research. The book brings together leading scientists in the diverse fields of anatomy, neuroimaging, image-guided neurosurgery, brain injury, solid and fluid mechanics, mathematical modelling and computer simulation to paint an inclusive picture of the rapidly evolving field. Covering topics from brain anatomy and imaging to sophisticated methods of modeling brain injury and neurosurgery (including the most recent applications of biomechanics to treat epilepsy), to the cutting edge methods in analyzing cerebrospinal fluid and blood flow, this book is the comprehensive reference in the field. Experienced researchers as well as students will find this book useful.
The seven-volume set LNCS 12261, 12262, 12263, 12264, 12265, 12266, and 12267 constitutes the refereed proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, held in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic. The 542 revised full papers presented were carefully reviewed and selected from 1809 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: machine learning methodologies Part II: image reconstruction; prediction and diagnosis; cross-domain methods and reconstruction; domain adaptation; machine learning applications; generative adversarial networks Part III: CAI applications; image registration; instrumentation and surgical phase detection; navigation and visualization; ultrasound imaging; video image analysis Part IV: segmentation; shape models and landmark detection Part V: biological, optical, microscopic imaging; cell segmentation and stain normalization; histopathology image analysis; opthalmology Part VI: angiography and vessel analysis; breast imaging; colonoscopy; dermatology; fetal imaging; heart and lung imaging; musculoskeletal imaging Part VI: brain development and atlases; DWI and tractography; functional brain networks; neuroimaging; positron emission tomography
The six-volume set LNCS 11764, 11765, 11766, 11767, 11768, and 11769 constitutes the refereed proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, held in Shenzhen, China, in October 2019. The 539 revised full papers presented were carefully reviewed and selected from 1730 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: optical imaging; endoscopy; microscopy. Part II: image segmentation; image registration; cardiovascular imaging; growth, development, atrophy and progression. Part III: neuroimage reconstruction and synthesis; neuroimage segmentation; diffusion weighted magnetic resonance imaging; functional neuroimaging (fMRI); miscellaneous neuroimaging. Part IV: shape; prediction; detection and localization; machine learning; computer-aided diagnosis; image reconstruction and synthesis. Part V: computer assisted interventions; MIC meets CAI. Part VI: computed tomography; X-ray imaging.
This book offers a comprehensive overview of the fundamentals of navigation surgery in the head and neck region. Navigation is particularly important in difficult and limited exposure areas, such as the orbit and deep spaces of the head and neck. With the aid of navigation systems, an expert can palpably and accurately measure the amount of bone removed during fracture reductions or resections of bony masses procedures. In addition to reducing surgery time for soft tissue lesions, navigation technique also allows for minimally invasive access to lesions without extensive dissection that is often required for traditional open approaches. Navigation can also be extremely helpful in locating and retrieving foreign bodies. Chapters cover navigation in a variety of different surgical specialties including, but not limited to, trauma surgery, implant surgery, and orthogenetic surgery. Chapters also discuss surgical pathology as well as guided surgeries. The book features detailed case presentations for each surgery sub-topic and discusses future advances in the field that are currently in development. Navigation in Oral & Maxillofacial Surgery is a must-have resource for clinicians, professionals, and practitioners in the fields of oral & maxillofacial surgery, otorhinolaryngology-head & neck surgery, trauma surgery, and plastic surgery, as well as researchers and postgraduate students in related fields.
This book presents the proceedings of the 21st NextMed/MMVR conference, held in Manhattan Beach, California, in February 2014. These papers describe recent developments in medical simulation, modeling, visualization, imaging, haptics, robotics, sensors, interfaces, and other IT-enabled technologies that benefit healthcare. The wide range of applications includes simulation for medical education and surgical training, information-guided therapies, mental and physical rehabilitation tools, and intelligence networks. Since 1992, Nextmed/MMVR has engaged the problem-solving abilities of scientists, engineers, clinicians, educators, the military, students, and healthcare futurists. Its multidisciplinary participation offers a fresh perspective on how to make patient care and medical education more precise and effective.
The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This volume comprises eighteen of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, UK, Switzerland, Scotland, France and Russia. Some of the interesting topics discussed are: tailored computational models; traumatic brain injury; soft-tissue mechanics; medical image analysis; and clinically-relevant simulations. One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.
In the early 1990s, a small group of individuals recognized how virtual reality (VR) could transform medicine by immersing physicians, students and patients in data more completely. Technical obstacles delayed progress but VR is now enjoying a renaissance, with breakthrough applications available for healthcare. This book presents papers from the Medicine Meets Virtual Reality 22 conference, held in Los Angeles, California, USA, in April 2016. Engineers, physicians, scientists, educators, students, industry, military, and futurists participated in its creative mix of unorthodox thinking and validated investigation. The topics covered include medical simulation and modeling, imaging and visualization, robotics, haptics, sensors, physical and mental rehabilitation tools, and more. Providing an overview of the state-of-the-art, this book will interest all those involved in medical VR and in innovative healthcare, generally.
This book constitutes the refereed proceedings of the International Symposium on Surgery Simulation and Soft Tissue Modeling, IS4TM 2003, held in Juan-Les-Pins, France in June 2003. The 33 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 45 submissions. The papers are organized in topical sections on soft tissue models, haptic rendering, cardiac modeling, and patient specific simulators.