Download Free Real Chip Design And Verification Using Verilog And Vhdl Book in PDF and EPUB Free Download. You can read online Real Chip Design And Verification Using Verilog And Vhdl and write the review.

This book concentrates on common classes of hardware architectures and design problems, and focuses on the process of transitioning design requirements into synthesizable HDL code. Using his extensive, wide-ranging experience in computer architecture and hardware design, as well as in his training and consulting work, Ben provides numerous examples of real-life designs illustrated with VHDL and Verilog code. This code is shown in a way that makes it easy for the reader to gain a greater understanding of the languages and how they compare. All code presented in the book is included on the companion CD, along with other information, such as application notes.
The first edition of Principles of Verifiable RTL Design offered a common sense method for simplifying and unifying assertion specification by creating a set of predefined specification modules that could be instantiated within the designer's RTL. Since the release of the first edition, an entire industry-wide initiative for assertion specification has emerged based on ideas presented in the first edition. This initiative, known as the Open Verification Library Initiative (www.verificationlib.org), provides an assertion interface standard that enables the design engineer to capture many interesting properties of the design and precludes the need to introduce new HDL constructs (i.e., extensions to Verilog are not required). Furthermore, this standard enables the design engineer to `specify once,' then target the same RTL assertion specification over multiple verification processes, such as traditional simulation, semi-formal and formal verification tools. The Open Verification Library Initiative is an empowering technology that will benefit design and verification engineers while providing unity to the EDA community (e.g., providers of testbench generation tools, traditional simulators, commercial assertion checking support tools, symbolic simulation, and semi-formal and formal verification tools). The second edition of Principles of Verifiable RTL Design expands the discussion of assertion specification by including a new chapter entitled `Coverage, Events and Assertions'. All assertions exampled are aligned with the Open Verification Library Initiative proposed standard. Furthermore, the second edition provides expanded discussions on the following topics: start-up verification; the place for 4-state simulation; race conditions; RTL-style-synthesizable RTL (unambiguous mapping to gates); more `bad stuff'. The goal of the second edition is to keep the topic current. Principles of Verifiable RTL Design, A Functional Coding Style Supporting Verification Processes, Second Edition tells you how you can write Verilog to describe chip designs at the RTL level in a manner that cooperates with verification processes. This cooperation can return an order of magnitude improvement in performance and capacity from tools such as simulation and equivalence checkers. It reduces the labor costs of coverage and formal model checking by facilitating communication between the design engineer and the verification engineer. It also orients the RTL style to provide more useful results from the overall verification process.
Digital Design: An Embedded Systems Approach Using Verilog provides a foundation in digital design for students in computer engineering, electrical engineering and computer science courses. It takes an up-to-date and modern approach of presenting digital logic design as an activity in a larger systems design context. Rather than focus on aspects of digital design that have little relevance in a realistic design context, this book concentrates on modern and evolving knowledge and design skills. Hardware description language (HDL)-based design and verification is emphasized--Verilog examples are used extensively throughout. By treating digital logic as part of embedded systems design, this book provides an understanding of the hardware needed in the analysis and design of systems comprising both hardware and software components. Includes a Web site with links to vendor tools, labs and tutorials. Presents digital logic design as an activity in a larger systems design context Features extensive use of Verilog examples to demonstrate HDL (hardware description language) usage at the abstract behavioural level and register transfer level, as well as for low-level verification and verification environments Includes worked examples throughout to enhance the reader's understanding and retention of the material Companion Web site includes links to tools for FPGA design from Synplicity, Mentor Graphics, and Xilinx, Verilog source code for all the examples in the book, lecture slides, laboratory projects, and solutions to exercises
A completely updated and expanded comprehensive treatment of VHDL and its applications to the design and simulation of real, industry-standard circuits. This comprehensive treatment of VHDL and its applications to the design and simulation of real, industry-standard circuits has been completely updated and expanded for the third edition. New features include all VHDL-2008 constructs, an extensive review of digital circuits, RTL analysis, and an unequaled collection of VHDL examples and exercises. The book focuses on the use of VHDL rather than solely on the language, with an emphasis on design examples and laboratory exercises. The third edition begins with a detailed review of digital circuits (combinatorial, sequential, state machines, and FPGAs), thus providing a self-contained single reference for the teaching of digital circuit design with VHDL. In its coverage of VHDL-2008, it makes a clear distinction between VHDL for synthesis and VHDL for simulation. The text offers complete VHDL codes in examples as well as simulation results and comments. The significantly expanded examples and exercises include many not previously published, with multiple physical demonstrations meant to inspire and motivate students. The book is suitable for undergraduate and graduate students in VHDL and digital circuit design, and can be used as a professional reference for VHDL practitioners. It can also serve as a text for digital VLSI in-house or academic courses.
mental improvements during the same period. What is clearly needed in verification techniques and technology is the equivalent of a synthesis productivity breakthrough. In the second edition of Writing Testbenches, Bergeron raises the verification level of abstraction by introducing coverage-driven constrained-random transaction-level self-checking testbenches all made possible through the introduction of hardware verification languages (HVLs), such as e from Verisity and OpenVera from Synopsys. The state-of-art methodologies described in Writing Test benches will contribute greatly to the much-needed equivalent of a synthesis breakthrough in verification productivity. I not only highly recommend this book, but also I think it should be required reading by anyone involved in design and verification of today's ASIC, SoCs and systems. Harry Foster Chief Architect Verplex Systems, Inc. xviii Writing Testbenches: Functional Verification of HDL Models PREFACE If you survey hardware design groups, you will learn that between 60% and 80% of their effort is now dedicated to verification.
SystemVerilog is a rich set of extensions to the IEEE 1364-2001 Verilog Hardware Description Language (Verilog HDL). These extensions address two major aspects of HDL based design. First, modeling very large designs with concise, accurate, and intuitive code. Second, writing high-level test programs to efficiently and effectively verify these large designs. This book, SystemVerilog for Design, addresses the first aspect of the SystemVerilog extensions to Verilog. Important modeling features are presented, such as two-state data types, enumerated types, user-defined types, structures, unions, and interfaces. Emphasis is placed on the proper usage of these enhancements for simulation and synthesis. A companion to this book, SystemVerilog for Verification, covers the second aspect of SystemVerilog.
The skills and guidance needed to master RTL hardware design This book teaches readers how to systematically design efficient, portable, and scalable Register Transfer Level (RTL) digital circuits using the VHDL hardware description language and synthesis software. Focusing on the module-level design, which is composed of functional units, routing circuit, and storage, the book illustrates the relationship between the VHDL constructs and the underlying hardware components, and shows how to develop codes that faithfully reflect the module-level design and can be synthesized into efficient gate-level implementation. Several unique features distinguish the book: * Coding style that shows a clear relationship between VHDL constructs and hardware components * Conceptual diagrams that illustrate the realization of VHDL codes * Emphasis on the code reuse * Practical examples that demonstrate and reinforce design concepts, procedures, and techniques * Two chapters on realizing sequential algorithms in hardware * Two chapters on scalable and parameterized designs and coding * One chapter covering the synchronization and interface between multiple clock domains Although the focus of the book is RTL synthesis, it also examines the synthesis task from the perspective of the overall development process. Readers learn good design practices and guidelines to ensure that an RTL design can accommodate future simulation, verification, and testing needs, and can be easily incorporated into a larger system or reused. Discussion is independent of technology and can be applied to both ASIC and FPGA devices. With a balanced presentation of fundamentals and practical examples, this is an excellent textbook for upper-level undergraduate or graduate courses in advanced digital logic. Engineers who need to make effective use of today's synthesis software and FPGA devices should also refer to this book.
This book describes RTL design using Verilog, synthesis and timing closure for System On Chip (SOC) design blocks. It covers the complex RTL design scenarios and challenges for SOC designs and provides practical information on performance improvements in SOC, as well as Application Specific Integrated Circuit (ASIC) designs. Prototyping using modern high density Field Programmable Gate Arrays (FPGAs) is discussed in this book with the practical examples and case studies. The book discusses SOC design, performance improvement techniques, testing and system level verification, while also describing the modern Intel FPGA/XILINX FPGA architectures and their use in SOC prototyping. Further, the book covers the Synopsys Design Compiler (DC) and Prime Time (PT) commands, and how they can be used to optimize complex ASIC/SOC designs. The contents of this book will be useful to students and professionals alike.
VHDL Answers to Frequently asked Questions is a follow-up to the author's book VHDL Coding Styles and Methodologies (ISBN 0-7923-9598-0). On completion of his first book, the author continued teaching VHDL and actively participated in the comp. lang. vhdl newsgroup. During his experiences, he was enlightened by the many interesting issues and questions relating to VHDL and synthesis. These pertained to: misinterpretations in the use of the language; methods for writing error free, and simulation efficient, code for testbench designs and for synthesis; and general principles and guidelines for design verification. As a result of this wealth of public knowledge contributed by a large VHDL community, the author decided to act as a facilitator of this information by collecting different classes of VHDL issues, and by elaborating on these topics through complete simulatable examples. TItis book is intended for those who are seeking an enhanced proficiency in VHDL. Its target audience includes: 1. Engineers. The book addresses a set of problems commonly experienced by real users of VHDL. It provides practical explanations to the questions, and suggests practical solutions to the raised issues. It also includes packages of common utilities that are useful in the generation of debug code and testbench designs. These packages include conversions to strings (the IMAGE package), generation of Linear Feedback Shift Registers (LFSR), Multiple Input Shift Register (MISR), and random number generators.