Download Free Reactor Irradiation Of Uranium Impregnated Graphite At 1500c To 10 Burnup Book in PDF and EPUB Free Download. You can read online Reactor Irradiation Of Uranium Impregnated Graphite At 1500c To 10 Burnup and write the review.

Two type-AUC graphite fuel elements loaded by solution impregnation to an average concentration of 0.115 g/cc of 93.13% enriched U converted to UC and UC/sub 2/ were irradiated at temperatures of about 1500 deg C to a 10.2% maximum burnup, corresponding to an irradiation level of 219 kwh/cc or 2.45 x 10/sup 19/ fissions/cc of fuel element. Post-irradiation measurements of the elements showed dimensional changes of -4.3 and -4.8% with the grain, and --0.8 to -2.5% across the grain. Weight losses were 3.2 and 5.1% for the individual elements with approximately 11% of the total U being lost from the elements. With-the- grain thermal conductivity at nominal room temperature was reduced by a factor of approximates 7 and electrical conductivities by factors of 3.4 to 8.3, also at room temperature. Impact strength appeared to be somewhat improved by irradiation. Migration of U within the element was detected by radiographic density observations but not evaluated quantitatively. As anticipated, fission product release was high. (auth).
Two type-AUC graphite fuel elements loaded by solution impregnation to an average concentration of 0.115 g/cc of 93.13% enriched U converted to UC and UC2 were irradiated at temperatures of about 1500 deg C to a 10.2% maximum burnup, corresponding to an irradiation level of 219 kwh/cc or 2.45 x 101 fissions/cc of fuel element. Post-irradiation measurements of the elements showed dimensional changes of -4.3 and -4.8% with the grain, and --0.8 to -2.5% across the grain. Weight losses were 3.2 and 5.1% for the individual elements with approximately 11% of the total U being lost from the elements. With-the- grain thermal conductivity at nominal room temperature was reduced by a factor of approximates 7 and electrical conductivities by factors of 3.4 to 8.3, also at room temperature. Impact strength appeared to be somewhat improved by irradiation. Migration of U within the element was detected by radiographic density observations but not evaluated quantitatively. As anticipated, fission product release was high.
Nuclear Energy, Volume 102: Radiation Damage in Graphite provides a general account of the effects of irradiation on graphite. This book presents valuable work on the structure of the defects produced in graphite crystals by irradiation. Organized into eight chapters, this volume begins with an overview of the description of the methods of manufacturing graphite and of its physical properties. This text then presents details of the method of setting up a scale of irradiation dose. Other chapters consider the effect of irradiation at a given temperature on a physical property of graphite. This book discusses as well the changes in dimensions produced by irradiation and the effects of irradiation on the mechanical properties of graphite. The final chapter deals with the accumulation of stored energy, which is one of the main problems caused by the irradiation of graphite in nuclear reactors. This book is a valuable resource for physicists and chemical physicists.
Nuclear power currently contributes some 20% of the electricity needs of the UK and is rising rapidly on the political agenda due to environmental and economic factors, and yet all but one of the UK's existing nuclear reactors is expected to close by 2023. The increasing emphasis towards nuclear power rests on security of supply and reducing carbon emissions. This comprehensive book provides an account of the recent advances in securing safe performance of graphite-moderated nuclear reactors both within the UK and abroad which underpin life extension whilst maintaining high levels of plant performance. These reactors rely on graphite as a moderator in the form of layers of interlocked graphite bricks which undergo complex changes when exposed over long periods to the effects of neutron irradiation and radiolytic oxidation. The objective of this book is to outline the current approaches in terms of assessment methodologies, surveillance and test methods, performance prediction, graphite reactor decommissioning, regulatory requirements and the relevance to future reactor designs. The book is a sequel to the successful RSC publication "Managing of Ageing Processes in Graphite Reactor Cores", but with the emphasis on the challenges for the future safe performance. It is hoped that the contributed papers will also help in the design, construction, operation and eventual decommissioning of the new generation of graphite-moderated reactors. Papers presented in the book represent contributions from the most eminent specialists in the field and reflect the UK's contribution over the past 50 years to graphite reactor technology that will remain significant for years to come, especially in the development of Generation IV designs. This seminal book is written in a way that takes the reader from fundamental knowledge to reactor operation in a straight forward and understandable manner - ideal for non-specialist as well as a unique reference for the specialist. It is fully illustrated to aid understanding and is relevant to a wide range of readers from policy makers to reactor operators.