Download Free Reactor Coolant Pump Seal Issues And Their Applicability To New Reactor Designs Book in PDF and EPUB Free Download. You can read online Reactor Coolant Pump Seal Issues And Their Applicability To New Reactor Designs and write the review.

Reactor Coolant Pumps (RCPs) of various types are used to circulate the primary coolant through the reactor in most reactor designs. RCPs generally contain mechanical seals to limit the leakage of pressurized reactor coolant along the pump drive shaft into the containment. The relatively large number of RCP seal and seal auxiliary system failures experienced at US operating plants during the 1970's and early 1980's raised concerns from the US Nuclear Regulatory Commission (NRC) that gross failures may lead to reactor core uncovery and subsequent core damage. Some seal failure events resulted in a loss of primary coolant to the containment at flow rates greater than the normal makeup capacity of Pressurized Water Reactor (PWR) plants. This is an example of RCP seal failures resulting in a small Loss of Coolant Accident (LOCA). This paper discusses observed and potential causes of RCP seal failure and the recommendations for limiting the likelihood of a seal induced small LOCA. Issues arising out of the research supporting these recommendations and subsequent public comments by the utility industry on them, serve as lessons learned, which are applicable to the design of new reactor plants.
This document presents an investigation of the safety impact resulting from mechanical- and maintenance-induced reactor coolant pump (RCP) seal failures in nuclear power plants. A data survey of the pump seal failures for existing nuclear power plants in the US from several available sources was performed. The annual frequency of pump seal failures in a nuclear power plant was estimated based on the concept of hazard rate and dependency evaluation. The conditional probability of various sizes of leak rates given seal failures was then evaluated. The safety impact of RCP seal failures, in terms of contribution to plant core-melt frequency, was also evaluated for three nuclear power plants. For leak rates below the normal makeup capacity and the impact of plant safety were discussed qualitatively, whereas for leak rates beyond the normal make up capacity, formal PRA methodologies were applied. 22 refs., 17 figs., 19 tabs.
In a nuclear power plant, one of the most important systems for both safety and performance is the reactor cooling system. The cooling system is generally driven by one or more very large centrifugal pumps. Most reactor coolant pumps utilize a multi-stage mechanical face seal system for fluid containment. As a result, these seal systems are critical to safe, continued operation of a nuclear reactor. Without adequate sealing, loss of coolant volume can occur, and a reactor may be forced to shut down, costing the operating utility significantly until it can be brought online again. The main advantage of mechanical face seals is their self-adjusting properties. These seals are tuned so that they automatically adjust to varying fluid conditions to provide adequate leakage control. Because of the enormous pressures, complicated water chemistry, and possible large temperature transients, the mechanical seals inside a reactor coolant pump must be some of the most robust seals available. In addition, their long service life and continuous operation demand durability and the capability to adjust to a wide range of conditions. However, over time, wear, chemical deposition, or changing operating conditions can alter the face gap, which is the critical geometry between the sealing faces of a seal. An altered face gap can lead to undesirable conditions of too much or not enough leakage, which must be maintained within a certain range to provide lubrication and cooling to the seal faces without resulting in uncontrolled coolant volume loss. Nuclear power plants operate within strict leakage ranges, and long-term effects causing undesirable leakage can eventually necessitate a reactor shutdown if the seal cannot self-adjust to control the leakage. This document will examine possible causes of undesirable leakage rates in a commonly-used reactor coolant pump assembly. These causes will be examined to determine the conditions which promote them, the physical explanation for their effect on the operation of a mechanical seal, and possible methods of mitigation of both the cause and its effect. These findings are based on previous publications by utilities and technical and incident reports from reactor stations which detail actual incidents of abnormal seal performance and their root causes as determined by the utilities. Next, a method of increasing the ability of a mechanical seal to adapt to a wider range of conditions will be proposed. This method involves modifying an existing seal face to include a method of active control. This active control focuses on deliberately deforming one face of the mechanical sealing face pair. This deformation alters the face gap in order to make the fluid conditions inside the face gap more preferable, generating more or less leakage as desired. Two methods of actuation, hydraulic pressure and piezoelectric deformation, will be proposed. Finally, a model of the actively controlled seal faces will be introduced. This model includes a method of numerically solving the Reynolds equation to determine the fluid mechanics that drive the lubrication problem in the seal face and coupling the solution with a deformation analysis in a finite element model of a seal face. The model solves iteratively until a converged solution of a sealed pressure distribution, a resulting face deformation, and a calculated leakage rate is reached. The model includes a study of the effects of induced deformation in the seal via both hydraulic and piezoelectric actuation and the ability of this deformation to control the leakage rate.