Download Free Reactive Separation Processes Book in PDF and EPUB Free Download. You can read online Reactive Separation Processes and write the review.

This book summarizes the available information in six known areas of reactive separation: reaction/distillation, reaction/extraction, reaction/absorption, reaction/adsorption, reaction/membrane, and reaction/crystallization.
This book summarizes the available information in six known areas of reactive separation: reaction/distillation, reaction/extraction, reaction/absorption, reaction/adsorption, reaction/membrane, and reaction/crystallization.
Process intensification aims for increasing efficiency and sustainability of (bio-)chemical production processes. This book presents strategies for improving fluid separation such as reactive distillation, reactive absorption and membrane assisted separations. The authors discuss computer simulation, model development, methodological approaches for synthesis and the design and scale-up of final industrial processes.
"This book describes, analyses and discusses the main principles, phenomena and design strategies of reactive separation processes with an emphasis on the intensification as a basis of the sustainability. Different reactive separation processes are explained in detail to show the phenomena and with the purpose of understanding when their use allows advantages based on the output results. Case examples are analysed and the perspective of these processes in the future is discussed. The overall sustainability of reactive separation processes in the industry is also explained separately"--
In a reactive distillation column, both the chemical conversion and the distillative separation of the product mixture are carried out simultaneously. Through this integrative strategy, chemical equilibrium limitations can be overcome, higher selectivities can be achieved and heat of reaction can be directly used for distillation. Increased process efficiency and reduction of investments and operational costs are the direct results of this approach. Highly renowned international experts from both industry and academia review the state-of-the-art and the future directions in application, design, analysis and control of Reactive Distillation processes. Part I surveys various industrial applications and covers both established large scale processes as well as new chemical reaction schemes with high future potential. Part II provides the vital details for analysis of reactive phase equilibria, and discusses the importance of chemical reaction kinetics, while Part III focuses on identifying feasible column configurations and designing their internal structure. Analysis and control of the complex dynamic and steady-state behavior of reactive distillation processes are described in Part IV. Reactive Distillation - a very promising alternative to conventional reaction-distillation flow schemes.
The impending crisis posed by water stress and poor sanitation represents one of greatest human challenges for the 21st century, and membrane technology has emerged as a serious contender to confront the crisis. Yet, whilst there are countless texts on wastewater treatment and on membrane technologies, none address the boron problem and separation processes for boron elimination. Boron Separation Processes fills this gap and provides a unique and single source that highlights the growing and competitive importance of these processes. For the first time, the reader is able to see in one reference work the state-of-the-art research in this rapidly growing field. The book focuses on four main areas: - Effect of boron on humans and plants - Separation of boron by ion exchange and adsorption processes - Separation of boron by membrane processes - Simulation and optimization studies for boron separation - Provides in one source a state-of-the-art overview of this compelling area - Reviews the environmental impact of boron before introducing emerging boron separation processes - Includes simulation and optimization studies for boron separation processes - Describes boron separation processes applicable to specific sources, such as seawater, geothermal water and wastewater
After an overview of the fundamentals, limitations, and scope of reactive distillation, this book uses rigorous models for steady-state design and dynamic analysis of different types of reactive distillation columns and quantitatively compares the economics of reactive distillation columns with conventional multi-unit processes. It goes beyond traditional steady-state design that primarily considers the capital investment and energy costs when analyzing the control structure and the dynamic robustness of disturbances, and discusses how to maximize the economic and environmental benefits of reactive distillation technology.
Separation processes—or processes that use physical, chemical, or electrical forces to isolate or concentrate selected constituents of a mixture—are essential to the chemical, petroleum refining, and materials processing industries. In this volume, an expert panel reviews the separation process needs of seven industries and identifies technologies that hold promise for meeting these needs, as well as key technologies that could enable separations. In addition, the book recommends criteria for the selection of separations research projects for the Department of Energy's Office of Industrial Technology.
Intensified processes have found widespread application in the chemical and petrochemical industries. The use of intensified systems allows for a reduction of operating costs and supports the “greening” of chemical processes. However, the design of intensified equipment requires special methodologies. This book describes the fundamentals and applications of these design methods, making it a valuable resource for use in both industry and academia.
This booklet is designed to bridge the gap between handbooks and technical literature and aims at graduate students or experienced readers. Commercial flow sheeting simulation software is increasingly available and is used in the early steps of process design in industry. As to this, more sophisticated and precise models based on activities instead of concentrations should be used. After an introductory chapter there is in Chapter 2 an intensive discussion of reactive phase equilibria of ionic and non-ionic solutes based on chemical potentials. Chapter 3 introduces to multicomponent diffusion and mass transfer. However, the main focus is on the reactive mass transfer on rigid and mobile surfaces where the interfacial reaction, molecular diffusion and adsorption layers are decisive. The respective extraction of zinc with a cation exchanger and of acetic acid with an anion exchanger is discussed as case studies. Since adsorption layers and surfactants have a major impact on liquid-liquid extraction efficiency, the final chapter reviews several tech niques which make use of polymeric species in an extractive process. A short review is also given on extraction apparatus and the hydrodynamics (hydraulic design, droplet populance balances) of columns. Much of the booklet is based on the PhD works of C. Czapla (2000), G. Modes (2000), H. Klocker (1996), T. Kronberger (1995), M. Marters (2000), M. Roos (2000), M. Traving (2000) and B. Wachter (1996) who I wish to thank for their fruitful contributions.