Download Free Reactive Power Control In Ac Power Systems Book in PDF and EPUB Free Download. You can read online Reactive Power Control In Ac Power Systems and write the review.

This textbook explores reactive power control and voltage stability and explains how they relate to different forms of power generation and transmission. Bringing together international experts in this field, it includes chapters on electric power analysis, design and operational strategies. The book explains fundamental concepts before moving on to report on the latest theoretical findings in reactive power control, including case studies and advice on practical implementation students can use to design their own research projects. Featuring numerous worked-out examples, problems and solutions, as well as over 400 illustrations, Reactive Power Control in AC Power Systems offers an essential textbook for postgraduate students in electrical power engineering. It offers practical advice on implementing the methods discussed in the book using MATLAB and DIgSILENT, and the relevant program files are available at extras.springer.com.
A unified approach to the fundamental principles and practices of reactive power control in AC power systems. Emphasizes voltage control, variable loads, and transmission. Covers high voltage and distribution systems, plus compensation equipment. Includes many practical numerical examples and useful formulas. Deals with real-world problems and solutions.
The concept of the smart grid promises the world an efficient and intelligent approach of managing energy production, transportation, and consumption by incorporating intelligence, efficiency, and optimality into the power grid. Both energy providers and consumers can take advantage of the convenience, reliability, and energy savings achieved by real-time and intelligent energy management. To this end, the current power grid is experiencing drastic changes and upgrades. For instance, more significant green energy resources such as wind power and solar power are being integrated into the power grid, and higher energy storage capacity is being installed in order to mitigate the intermittency issues brought about by the variable energy resources. At the same time, novel power electronics technologies and operating strategies are being invented and adopted. For instance, Flexible AC transmission systems and phasor measurement units are two promising technologies for improving the power system reliability and power quality. Demand side management will enable the customers to manage the power loads in an active fashion. As a result, modeling and control of modern power grids pose great challenges due to the adoption of new smart grid technologies. In this book, chapters regarding representative applications of smart grid technologies written by world-renowned experts are included, which explain in detail various innovative modeling and control methods.
This text, intended for the students pursuing postgraduate programmes in Electrical Engineering, focuses special attention on the implications of reactive power in voltage stability of transmission systems. The basic concepts of power system stability and other operational aspects have been discussed. Both the advanced and the practical aspects have been highlighted. Modern concepts and applications, theoretical as well as simulated study, have been presented wherever necessary. In brief, the text presents a complete overview of the research and engineering aspects of the problem of stability, suitable both for academics and practising engineers, along with a brief historical review of the concerned topics. In some instances the authors have included some of their own research results while maintaining the uniformity of overall treatment of the book. The text is replete with examples and is backed up by analytical derivations and physical interpretations, wherever considered necessary.
The comprehensive resource on reactive power compensation, presenting the design, application and operation of reactive power equipment and installations The area of reactive power compensation is gaining increasing importance worldwide. If suitably designed, it is capable of improving voltage quality significantly, meaning that losses in equipment and power systems are reduced, the permissible loading of equipment can be increased, and the over-all stability of system operation improved. Ultimately, energy use and CO2 emisson are reduced. This unique guide discusses the effects of reactive power on generation, transmission and distribution, and looks at the compensation of existing installations in detail. It outlines methods for determination of reactive power and answers the questions that arise when controlling it, for example, at parallel operation with generators. There is also a chapter devoted to installation, maintenance and disturbances. Key features include: A concise overview as well as deep specific knowledge on the segment power factor regulation and network quality Theory of reactive power compensation coupled with typical application examples such as car manufacturing, metal rolling and chemical works Chapter summaries with charts explaining how to put the theory into practice Coverage on the cost-saving aspects of this technology, including the efficient use of energy and the reduction of CO2 A practical guide for electrical engineers and technicians in utilities, this is also essential reading for maintenance engineers, designers, electrical contractors, manufacturing companies, and researchers, also those in industry and planning agencies. Insightful and clear, the book will also appeal to senior undergraduate and graduate electrical engineering students and professors.
This book describes the fundamental aspects of the new generation of electrical distribution grids, taking as its starting point the opportunities that exist for restructuring existing infrastructure. It emphasizes the incorporation of renewable energy sources into the distribution grid and the need for a technological evolution towards the implementation of smartgrids. The book is organized into two parts: the first part analyzes the integration of distributed energy sources into the distribution grid and the impact of these sources on grid operation. After a general description of the general characteristics of distribution grids and renewable energy sources, it then analyzes the economics of electrical energy distribution networks and presents the impact of these sources on grid operation. The second part of the book then analyzes the various functions which allow for safe operation of the grid and realization of the path towards real world application of smartgrids.
Based on the author’s twenty years of experience, this book shows the practicality of modern, conceptually new, wide area voltage control in transmission and distribution smart grids, in detail. Evidence is given of the great advantages of this approach, as well as what can be gained by new control functionalities which modern technologies now available can provide. The distinction between solutions of wide area voltage regulation (V-WAR) and wide area voltage protection (V-WAP) are presented, demonstrating the proper synergy between them when they operate on the same power system as well as the simplicity and effectiveness of the protection solution in this case. The author provides an overview and detailed descriptions of voltage controls, distinguishing between generalities of underdeveloped, on-field operating applications and modern and available automatic control solutions, which are as yet not sufficiently known or perceived for what they are: practical, high-performance and reliable solutions. At the end of this thorough and complex preliminary analysis the reader sees the true benefits and limitations of more traditional voltage control solutions, and gains an understanding and appreciation of the innovative grid voltage control and protection solutions here proposed; solutions aimed at improving the security, efficiency and quality of electrical power system operation around the globe. Voltage Control and Protection in Electrical Power Systems: from System Components to Wide Area Control will help to show engineers working in electrical power companies and system operators the significant advantages of new control solutions and will also interest academic control researchers studying ways of increasing power system stability and efficiency.
Within this book the fundamental concepts associated with the topic of power electronic control are covered alongside the latest equipment and devices, new application areas and associated computer-assisted methods. *A practical guide to the control of reactive power systems *Ideal for postgraduate and professional courses *Covers the latest equipment and computer-aided analysis.
This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally or due to a fault. Isolated power systems experience fast transients due to lack of an infinite bus capable of dictating the voltage and frequency reference. This dissertation only focuses on reactive control of islanded MicroGrids and AC/DC shipboard power systems. The problem is tackled using a Model Predictive Control (MPC) method, which uses a simplified model of the system to predict the voltage behavior of the system in future. The MPC method minimizes the voltage deviation of the predicted bus voltage; therefore, it is inherently robust and stable. In other words, this method can easily predict the behavior of the system and take necessary control actions to avoid instability. Further, this method is capable of reaching a smooth voltage profile and rejecting possible disturbances in the system. The studied MicroGrids in this dissertation integrate intermittent distributed energy resources such as wind and solar generators. These non-dispatchable sources add to the uncertainty of the system and make voltage and reactive control more challenging. The model predictive controller uses the capability of these sources and coordinates them dynamically to achieve the voltage goals of the controller. The MPC controller is implemented online in a closed control loop, which means it is self-correcting with the feedback it receives from the system. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148126