Download Free Reaction Kinetics And Reactor Design Second Edition Book in PDF and EPUB Free Download. You can read online Reaction Kinetics And Reactor Design Second Edition and write the review.

This text combines a description of the origin and use of fundamental chemical kinetics through an assessment of realistic reactor problems with an expanded discussion of kinetics and its relation to chemical thermodynamics. It provides exercises, open-ended situations drawing on creative thinking, and worked-out examples. A solutions manual is also available to instructors.
The Second Edition features new problems that engage readers in contemporary reactor design Highly praised by instructors, students, and chemical engineers, Introduction to Chemical Engineering Kinetics & Reactor Design has been extensively revised and updated in this Second Edition. The text continues to offer a solid background in chemical reaction kinetics as well as in material and energy balances, preparing readers with the foundation necessary for success in the design of chemical reactors. Moreover, it reflects not only the basic engineering science, but also the mathematical tools used by today’s engineers to solve problems associated with the design of chemical reactors. Introduction to Chemical Engineering Kinetics & Reactor Design enables readers to progressively build their knowledge and skills by applying the laws of conservation of mass and energy to increasingly more difficult challenges in reactor design. The first one-third of the text emphasizes general principles of chemical reaction kinetics, setting the stage for the subsequent treatment of reactors intended to carry out homogeneous reactions, heterogeneous catalytic reactions, and biochemical transformations. Topics include: Thermodynamics of chemical reactions Determination of reaction rate expressions Elements of heterogeneous catalysis Basic concepts in reactor design and ideal reactor models Temperature and energy effects in chemical reactors Basic and applied aspects of biochemical transformations and bioreactors About 70% of the problems in this Second Edition are new. These problems, frequently based on articles culled from the research literature, help readers develop a solid understanding of the material. Many of these new problems also offer readers opportunities to use current software applications such as Mathcad and MATLAB®. By enabling readers to progressively build and apply their knowledge, the Second Edition of Introduction to Chemical Engineering Kinetics & Reactor Design remains a premier text for students in chemical engineering and a valuable resource for practicing engineers.
This reference conveys a basic understanding of chemical reactor design methodologies that incorporate both control and hazard analysis. It demonstrates how to select the best reactor for any particular chemical reaction, and how to estimate its size to determine the best operating conditions.
Introduction to Chemical Reactor Analysis, Second Edition introduces the basic concepts of chemical reactor analysis and design, an important foundation for understanding chemical reactors, which play a central role in most industrial chemical plants. The scope of the second edition has been significantly enhanced and the content reorganized for improved pedagogical value, containing sufficient material to be used as a text for an undergraduate level two-term course. This edition also contains five new chapters on catalytic reaction engineering. Written so that newcomers to the field can easily progress through the topics, this text provides sufficient knowledge for readers to perform most of the common reaction engineering calculations required for a typical practicing engineer. The authors introduce kinetics, reactor types, and commonly used terms in the first chapter. Subsequent chapters cover a review of chemical engineering thermodynamics, mole balances in ideal reactors for three common reactor types, energy balances in ideal reactors, and chemical reaction kinetics. The text also presents an introduction to nonideal reactors, and explores kinetics and reactors in catalytic systems. The book assumes that readers have some knowledge of thermodynamics, numerical methods, heat transfer, and fluid flow. The authors include an appendix for numerical methods, which are essential to solving most realistic problems in chemical reaction engineering. They also provide numerous worked examples and additional problems in each chapter. Given the significant number of chemical engineers involved in chemical process plant operation at some point in their careers, this book offers essential training for interpreting chemical reactor performance and improving reactor operation. What’s New in This Edition: Five new chapters on catalytic reaction engineering, including various catalytic reactions and kinetics, transport processes, and experimental methods Expanded coverage of adsorption Additional worked problems Reorganized material
Bioprocess Engineering involves the design and development of equipment and processes for the manufacturing of products such as food, feed, pharmaceuticals, nutraceuticals, chemicals, and polymers and paper from biological materials. It also deals with studying various biotechnological processes. "Bioprocess Kinetics and Systems Engineering" first of its kind contains systematic and comprehensive content on bioprocess kinetics, bioprocess systems, sustainability and reaction engineering. Dr. Shijie Liu reviews the relevant fundamentals of chemical kinetics-including batch and continuous reactors, biochemistry, microbiology, molecular biology, reaction engineering, and bioprocess systems engineering- introducing key principles that enable bioprocess engineers to engage in the analysis, optimization, design and consistent control over biological and chemical transformations. The quantitative treatment of bioprocesses is the central theme of this book, while more advanced techniques and applications are covered with some depth. Many theoretical derivations and simplifications are used to demonstrate how empirical kinetic models are applicable to complicated bioprocess systems. Contains extensive illustrative drawings which make the understanding of the subject easy Contains worked examples of the various process parameters, their significance and their specific practical use Provides the theory of bioprocess kinetics from simple concepts to complex metabolic pathways Incorporates sustainability concepts into the various bioprocesses
This second, extended and updated edition presents the current state of kinetics of chemical reactions, combining basic knowledge with results recently obtained at the frontier of science. Special attention is paid to the problem of the chemical reaction complexity with theoretical and methodological concepts illustrated throughout by numerous examples taken from heterogeneous catalysis combustion and enzyme processes. Of great interest to graduate students in both chemistry and chemical engineering.
Laurence Belfiore’s unique treatment meshes two mainstream subject areas in chemical engineering: transport phenomena and chemical reactor design. Expressly intended as an extension of Bird, Stewart, and Lightfoot’s classic Transport Phenomena, and Froment and Bischoff’s Chemical Reactor Analysis and Design, Second Edition, Belfiore’s unprecedented text explores the synthesis of these two disciplines in a manner the upper undergraduate or graduate reader can readily grasp. Transport Phenomena for Chemical Reactor Design approaches the design of chemical reactors from microscopic heat and mass transfer principles. It includes simultaneous consideration of kinetics and heat transfer, both critical to the performance of real chemical reactors. Complementary topics in transport phenomena and thermodynamics that provide support for chemical reactor analysis are covered, including: Fluid dynamics in the creeping and potential flow regimes around solid spheres and gas bubbles The corresponding mass transfer problems that employ velocity profiles, derived in the book’s fluid dynamics chapter, to calculate interphase heat and mass transfer coefficients Heat capacities of ideal gases via statistical thermodynamics to calculate Prandtl numbers Thermodynamic stability criteria for homogeneous mixtures that reveal that binary molecular diffusion coefficients must be positive In addition to its comprehensive treatment, the text also contains 484 problems and ninety-six detailed solutions to assist in the exploration of the subject. Graduate and advanced undergraduate chemical engineering students, professors, and researchers will appreciate the vision, innovation, and practical application of Laurence Belfiore’s Transport Phenomena for Chemical Reactor Design.