Download Free Reaction Diffusion Computers Book in PDF and EPUB Free Download. You can read online Reaction Diffusion Computers and write the review.

The book introduces a hot topic of novel and emerging computing paradigms and architectures -computation by travelling waves in reaction-diffusion media. A reaction-diffusion computer is a massively parallel computing device, where the micro-volumes of the chemical medium act as elementary few-bit processors, and chemical species diffuse and react in parallel. In the reaction-diffusion computer both the data and the results of the computation are encoded as concentration profiles of the reagents, or local disturbances of concentrations, whilst the computation per se is performed via the spreading and interaction of waves caused by the local disturbances. The monograph brings together results of a decade-long study into designing experimental and simulated prototypes of reaction-diffusion computing devices for image processing, path planning, robot navigation, computational geometry, logics and artificial intelligence. The book is unique because it gives a comprehensive presentation of the theoretical and experimental foundations, and cutting-edge computation techniques, chemical laboratory experimental setups and hardware implementation technology employed in the development of novel nature-inspired computing devices. Key Features: - Non-classical and fresh approach to theory of computation. - In depth exploration of novel and emerging paradigms of nature-inspired computing. - Simple to understand cellular-automata models will help readers/students to design their own computational experiments to advance ideas and concepts described in the book . - Detailed description of receipts and experimental setups of chemical laboratory reaction-diffusion processors will make the book an invaluable resource in practical studies of non-classical and nature-inspired computing architectures . - Step by step explanations of VLSI reaction-diffusion circuits will help students to design their own types of wave-based processors.Key Features: - Non-classical and fresh approach to theory of computation. - In depth exploration of novel and emerging paradigms of nature-inspired computing. - Simple to understand cellular-automata models will help readers/students to design their own computational experiments to advance ideas and concepts described in the book . - Detailed description of receipts and experimental setups of chemical laboratory reaction-diffusion processors will make the book an invaluable resource in practical studies of non-classical and nature-inspired computing architectures . - Step by step explanations of VLSI reaction-diffusion circuits will help students to design their own types of wave-based processors.
Collision-Based Computing presents a unique overview of computation with mobile self-localized patterns in non-linear media, including computation in optical media, mathematical models of massively parallel computers, and molecular systems. It covers such diverse subjects as conservative computation in billiard ball models and its cellular-automaton analogues, implementation of computing devices in lattice gases, Conway's Game of Life and discrete excitable media, theory of particle machines, computation with solitons, logic of ballistic computing, phenomenology of computation, and self-replicating universal computers. Collision-Based Computing will be of interest to researchers working on relevant topics in Computing Science, Mathematical Physics and Engineering. It will also be useful background reading for postgraduate courses such as Optical Computing, Nature-Inspired Computing, Artificial Intelligence, Smart Engineering Systems, Complex and Adaptive Systems, Parallel Computation, Applied Mathematics and Computational Physics.
This book is the refereed proceedings of the Second International Workshop on Natural Computing, IWNC 2007, held in Noyori Conference Hall, Nagoya University in December 2007. IWNC aims to bring together computer scientists, biologists, mathematicians, electronic engineers, physicists, and humanitarians, to critically assess present findings in the field, and to outline future developments in nature-inspired computing.
The European Computing Conference offers a unique forum for establishing new collaborations within present or upcoming research projects, exchanging useful ideas, presenting recent research results, participating in discussions and establishing new academic collaborations, linking university with the industry. Engineers and Scientists working on various areas of Systems Theory, Applied Mathematics, Simulation, Numerical and Computational Methods and Parallel Computing present the latest findings, advances, and current trends on a wide range of topics. This proceedings volume will be of interest to students, researchers, and practicing engineers.
Computing in Nonlinear Media and Automata Collectives presents an account of new ways to design massively parallel computing devices in advanced mathematical models, such as cellular automata and lattice swarms, from unconventional materials, including chemical solutions, bio-polymers, and excitable media.
A Physarum machine is a programmable amorphous biological computer experimentally implemented in the vegetative state of true slime mould Physarum polycephalum. It comprises an amorphous yellowish mass with networks of protoplasmic veins, programmed by spatial configurations of attracting and repelling gradients.This book demonstrates how to create experimental Physarum machines for computational geometry and optimization, distributed manipulation and transportation, and general-purpose computation. Being very cheap to make and easy to maintain, the machine also functions on a wide range of substrates and in a broad scope of environmental conditions. As such a Physarum machine is a ‘green’ and environmentally friendly unconventional computer.The book is readily accessible to a nonprofessional reader, and is a priceless source of experimental tips and inventive theoretical ideas for anyone who is inspired by novel and emerging non-silicon computers and robots.
Did you know that computation can be implemented with cytoskeleton networks, chemical reactions, liquid marbles, plants, polymers and dozens of other living and inanimate substrates? Do you know what is reversible computing or a DNA microscopy? Are you aware that randomness aids computation? Would you like to make logical circuits from enzymatic reactions? Have you ever tried to implement digital logic with Minecraft? Do you know that eroding sandstones can compute too?This volume reviews most of the key attempts in coming up with an alternative way of computation. In doing so, the authors show that we do not need computers to compute and we do not need computation to infer. It invites readers to rethink the computer and computing, and appeals to computer scientists, mathematicians, physicists and philosophers. The topics are presented in a lively and easily accessible manner and make for ideal supplementary reading across a broad range of subjects.
A Physarum machine is a programmable amorphous biological computer experimentally implemented in the vegetative state of true slime mould Physarum polycephalum. It comprises an amorphous yellowish mass with networks of protoplasmic veins, programmed by spatial configurations of attracting and repelling gradients. This book demonstrates how to create experimental Physarum machines for computational geometry and optimization, distributed manipulation and transportation, and general-purpose computation. Being very cheap to make and easy to maintain, the machine also functions on a wide range of substrates and in a broad scope of environmental conditions. As such a Physarum machine is a 'green' and environmentally friendly unconventional computer. The book is readily accessible to a nonprofessional reader, and is a priceless source of experimental tips and inventive theoretical ideas for anyone who is inspired by novel and emerging non-silicon computers and robots. An account on Physarum Machines can be viewed at http: //www.youtube.com/user/PhysarumMachines.
Reaction-diffusion and excitable media are amongst most intriguing substrates. Despite apparent simplicity of the physical processes involved the media exhibit a wide range of amazing patterns: from target and spiral waves to travelling localisations and stationary breathing patterns. These media are at the heart of most natural processes, including morphogenesis of living beings, geological formations, nervous and muscular activity, and socio-economic developments. This book explores a minimalist paradigm of studying reaction-diffusion and excitable media using locally-connected networks of finite-state machines: cellular automata and automata on proximity graphs. Cellular automata are marvellous objects per se because they show us how to generate and manage complexity using very simple rules of dynamical transitions. When combined with the reaction-diffusion paradigm the cellular automata become an essential user-friendly tool for modelling natural systems and designing future and emergent computing architectures. The book brings together hot topics of non-linear sciences, complexity, and future and emergent computing. It shows how to discover propagating localisation and perform computation with them in very simple two-dimensional automaton models. Paradigms, models and implementations presented in the book strengthen the theoretical foundations in the area for future and emergent computing and lay key stones towards physical embodied information processing systems.