Download Free Rational S1 Equivariant Stable Homotopy Theory Book in PDF and EPUB Free Download. You can read online Rational S1 Equivariant Stable Homotopy Theory and write the review.

The memoir presents a systematic study of rational S1-equivariant cohomology theories, and a complete algebraic model for them. It provides a classification of such cohomology theories in simple algebraic terms and a practical means of calculation. The power of the model is illustrated by analysis of the Segal conjecture, the behaviour of the Atiyah-Hirzebruch spectral sequence, the structure of S1-equivariant K-theory, and the rational behaviour of cyclotomic spectra and the topological cyclic homology construction.
This book is a foundational piece of work in stable homotopy theory and in the theory of transformation groups. It may be roughly divided into two parts. The first part deals with foundations of (equivariant) stable homotopy theory. A workable category of CW-spectra is developed. The foundations are such that an action of a compact Lie group is considered throughout, and spectra allow desuspension by arbitrary representations. But even if the reader forgets about group actions, he will find many details of the theory worked out for the first time. More subtle constructions like smash products, function spectra, change of group isomorphisms, fixed point and orbit spectra are treated. While it is impossible to survey properly the material which is covered in the book, it does boast these general features: (i) a thorough and reliable presentation of the foundations of the theory; (ii) a large number of basic results, principal applications, and fundamental techniques presented for the first time in a coherent theory, unifying numerous treatments of special cases in the literature.
This volume introduces equivariant homotopy, homology, and cohomology theory, along with various related topics in modern algebraic topology. It explains the main ideas behind some of the most striking recent advances in the subject. The works begins with a development of the equivariant algebraic topology of spaces culminating in a discussion of the Sullivan conjecture that emphasizes its relationship with classical Smith theory. The book then introduces equivariant stable homotopy theory, the equivariant stable homotopy category, and the most important examples of equivariant cohomology theories. The basic machinery that is needed to make serious use of equivariant stable homotopy theory is presented next, along with discussions of the Segal conjecture and generalized Tate cohomology. Finally, the book gives an introduction to "brave new algebra", the study of point-set level algebraic structures on spectra and its equivariant applications. Emphasis is placed on equivariant complex cobordism, and related results on that topic are presented in detail.
A complete and definitive account of the authors' resolution of the Kervaire invariant problem in stable homotopy theory.
A comprehensive, self-contained approach to global equivariant homotopy theory, with many detailed examples and sample calculations.
This volume presents the proceedings of workshops on stable homotopy theory and on unstable homotopy theory held at The Fields Institute as part of the homotopy program during the year 1996. The papers in the volume describe current research in the subject, and all included works were refereed. Rather than being a summary of work to be published elsewhere, each paper is the unique source for the new material it contains. The book contains current research from international experts in the subject area, and presents open problems with directions for future research.
Nilpotence and Periodicity in Stable Homotopy Theory describes some major advances made in algebraic topology in recent years, centering on the nilpotence and periodicity theorems, which were conjectured by the author in 1977 and proved by Devinatz, Hopkins, and Smith in 1985. During the last ten years a number of significant advances have been made in homotopy theory, and this book fills a real need for an up-to-date text on that topic. Ravenel's first few chapters are written with a general mathematical audience in mind. They survey both the ideas that lead up to the theorems and their applications to homotopy theory. The book begins with some elementary concepts of homotopy theory that are needed to state the problem. This includes such notions as homotopy, homotopy equivalence, CW-complex, and suspension. Next the machinery of complex cobordism, Morava K-theory, and formal group laws in characteristic p are introduced. The latter portion of the book provides specialists with a coherent and rigorous account of the proofs. It includes hitherto unpublished material on the smash product and chromatic convergence theorems and on modular representations of the symmetric group.