Download Free Rational Approximation Of Real Functions Book in PDF and EPUB Free Download. You can read online Rational Approximation Of Real Functions and write the review.

This 1987 book examines the approximation of real functions by real rational functions. These are a more convenient tool than polynomials, and interest in them was growing, especially after D. Newman's work in the mid-sixties. The authors present the basic achievements of the subject and also discuss some topics from complex rational approximation.
Mathematics of Computing -- Numerical Analysis.
Contains the proceedings of the March 1991 annual conference of the Southeastern Approximation Theorists, in Memphis, Tenn. The 34 papers discuss topics of interest to graduate and professional numerical analysts, applied and industrial mathematicians, engineers, and other scientists such as splines
Theory of Approximation of Functions of a Real Variable discusses a number of fundamental parts of the modern theory of approximation of functions of a real variable. The material is grouped around the problem of the connection between the best approximation of functions to their structural properties. This text is composed of eight chapters that highlight the relationship between the various structural properties of real functions and the character of possible approximations to them by polynomials and other functions of simple construction. Each chapter concludes with a section containing various problems and theorems, which supplement the main text. The first chapters tackle the Weierstrass's theorem, the best approximation by polynomials on a finite segment, and some compact classes of functions and their structural properties. The subsequent chapters describe some properties of algebraic polynomials and transcendental integral functions of exponential type, as well as the direct theorems of the constructive theory of functions. These topics are followed by discussions of differential and constructive characteristics of converse theorems. The final chapters explore other theorems connecting the best approximations functions with their structural properties. These chapters also deal with the linear processes of approximation of functions by polynomials. The book is intended for post-graduate students and for mathematical students taking advanced courses, as well as to workers in the field of the theory of functions.
This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the field’s most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.
The NATO Advanced study Institute (ASI) on "Computational Aspects of Complex Analysis" was held at Braunlage/Harz (Germany) from July 26 to August 6, 1982. These proceedings contain the invited lectures presented at this institute, the aim of which was to bring together scientists from pure and applied mathematics as well as computer scientists. The main topics were problems dealing with approximation and interpolation by polynomial and rational functions (in particular Pade approximation), numerical methods for the solution of algebraic equations and differential equations, the large field of conformal mapping, aspects of computer imple mentation of complex arithmetic and calculations based on complex variable techniques. The sessions on short communications not only provided a platform for the presentation of contributions by the participants of the ASI but also the opportunity to discuss the material more thoroughly, to bring up open problems and to point out the inter relationship of the above mentioned topics. Quite naturally the short communications grouped around the topics of the main lectures. The stimulating atmosphere caused many discussions to continue privately for hours. Even out of the social program there emanated two short communications by L. Wuytack and L. Trefethen, which are included at the end of these proceedings. We gratefully appreciate the support of the International Advisory Committee that was formed by L. Collatz, Germany, C. Brezinski, France, G. Golub, U.S.A., P. Henrici, Switzerland, J. van Hulzen, the Netherlands, O. Skovgaard, Denmark, I. Sneddon, United Kingdom, and J. Todd, U.S.A.
Presented at a 1986 AMS Short Course, this title contains papers that give a brief introduction to approximation theory and some of its areas of active research, both theoretical and applied. It is best understood by those with a standard first graduate course in real and complex analysis.
Padé and Rational Approximation: Theory and Applications presents the proceedings of the Conference on Rational Approximation with Emphasis on Applications of Padé Approximants, held in Tampa, Florida on December 15-17, 1976. The contributors focus on the interplay of theory, computation, and physical applications. This book is composed of six parts encompassing 44 chapters. The introductory part discusses the general theory of orthogonal polynomials that is the mathematical basis of Padé approximants and related matters evaluation. This text also examines the connection between approximants on a stepline in the ordinary Padé table and certain continued fractions and the convergence of diagonal Padé approximants to a class of functions with an even number of branch points. The following parts deal with the special functions and continued fractions of Padé approximation and the theory of rational approximations. These parts also investigate the geometric convergence of Chebyshev rational approximation on the half line, the optimal approximation by "Almost Classical interpolation, and the incomplete polynomials approximation. The discussion then shifts to the physical applications and computations of the Padé approximants. The concluding part presents the applications of rational approximation to gun fire control and to the White Sands Missile Range Computer Facility. This part also provides a list of some open problems and conjectures concerning polynomials and rational functions. This book is of great benefit to mathematicians, physicists, and laboratory workers.
Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book is helpful both to readers seeking information about a specific constant, and to readers who desire a panoramic view of all constants coming from a particular field, for example, combinatorial enumeration or geometric optimization. Unsolved problems appear virtually everywhere as well. This work represents an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
The problem of obtaining the Tchebysheff approximation of a real continuous function in a closed interval by a polynomial or a rational function under a specified weighting function is treated. Solutions of such problems are obtained by numerical methods involving iterative procedures which may be carried out by modern computing machines. The effect of shifting a zero or several zeros of an error function on the weighted error function itself is obtained by multiplying the amount of shift by the sensitivity, defined as the partial derivative of the weighted error function with respect to the zero shifted. Various techniques are used to equalize (and hence minimize) the extrema of the weighted error. The knowledge of the zero shifting effect on the weighted error is used to determine the amount of shifts in different cases. The successive equalization of the weighted error function at the points of extrema gives an iterative procedure with assured convergence of the process. In the case of polynomial approximation, this method yields a set of linear simultaneous equations to be solved in each cycle. In the case of rational function approximation, it results in a set of non-linear simultaneous equations which can be solved by certain special techniques. Special cases such as the approximation with equal-ripple relative error and an approximating polynomial with specified cutoff slope are investigated.