Download Free Rare Metal Technology 2016 Book in PDF and EPUB Free Download. You can read online Rare Metal Technology 2016 and write the review.

This collection presents the papers presented in the symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. Paper topics include the extraction and processing of elements like antimony, arsenic, gold, indium, palladium, platinum, rare earth metals including yttrium and neodymium, titanium, tungsten, and vanadium. The rare processing techniques covered include direct extraction process for rare earth element recovery; biosorption of precious metals; fluorination behavior of uranium and zirconium mixture of fuel debris treatment; and recovery of valuable components of commodity metals such as zinc, nickel, and metals from slag.
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. It covers metals essential for critical modern technologies including electronics, electric motors, generators, energy storage systems, and specialty alloys. ​Rare metals are the main building blocks of many emerging critical technologies and have been receiving significant attention in recent years. Much research in academia and industry is devoted to finding novel techniques to extract critical and rare metals from primary and secondary sources. The technologies that rely on critical metals are dominating the world, and finding a way to extract and supply them effectively is highly desirable and beneficial. Rapid development of these technologies entails fast advancement of the resource and processing industry for their building materials. Authors from academia and industry exchange knowledge on developing, operating, and advancing extractive and processing technologies. Contributions cover rare-earth elements (magnets, catalysts, phosphors, and others), energy storage materials (lithium, cobalt, vanadium, graphite), alloy elements (scandium, niobium, titanium), and materials for electronics (gallium, germanium, indium, gold, silver). The contributions also cover various processing techniques in mineral beneficiation, hydrometallurgy, separation and purification, pyrometallurgy, electrometallurgy, supercritical fluid extraction, and recycling (batteries, magnets, electrical and electronic equipment).
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. Rare metals include strategic metals that are in increasing demand and subject to supply risks. Metals represented include neodymium, dysprosium, scandium and others; platinum group metals including platinum, palladium, iridium, and others; battery related metals including lithium, cobalt, nickel, and aluminum; electronics-related materials including copper and gold; and refectory metals including titanium, niobium, zirconium, and hafnium. Other critical materials such as gallium, germanium, indium and silicon are also included. Papers cover various processing techniques, including but not limited to hydrometallurgy (solvent extraction, ion exchange, precipitation, and crystallization), electrometallurgy (electrorefining and electrowinning), pyrometallurgy, and aeriometallurgy (supercritical fluid extraction). Contributions are focused on primary production as well as secondary production through urban mining and recycling to enable a circular economy. ​A useful resource for all involved in commodity metal production, irrespective of the major metal Provides knowledge of cross-application among industries Extraction and processing of rare metals that are the main building block of many emerging critical technologies have been receiving significant attention in recent years. The technologies that rely on critical metals are prominent worldwide, and finding a way to extract and supply them effectively is highly desirable and beneficial.
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. Topics include the extraction and processing of elements like antimony, arsenic, gold, indium, palladium, platinum, rare earth metals including yttrium and neodymium, titanium, tungsten, and vanadium. Rare processing techniques are covered, including direct extraction processes for rare-earth recovery, biosorption of precious metals, fluorination behavior of uranium and zirconium mixture of fuel debris treatment, and recovery of valuable components of commodity metals such as zinc, nickel, and metals from slag.
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. Topics include the extraction and processing of elements such as antimony, arsenic, gold, indium, palladium, platinum, rare earth metals including yttrium and neodymium, titanium, tungsten, and vanadium. Rare processing techniques are covered, including direct extraction processes for rare-earth recovery, biosorption of precious metals, fluorination behavior of uranium and zirconium mixture of fuel debris treatment, and recovery of valuable components of commodity metals such as zinc, nickel, and metals from slag.
This book examines the development, use, extraction, and recovery of rare earth metals. Rare earth elements (REEs) occupy a key role in daily life in industrial applications. They are one of the critical elements for energy and sustainable growth. REEs are utilized in many modern electrical and electronic devices such as smart phones, computers, LED lights etc. Recovery of the REEs from secondary resources represents a way to meet the growing demand for electronic devices. Because of their rarity, utility, and importance, the recovery, utilization and recycling of rare earth metals is of utmost importance. This book presents both current methods of processing rare earths from primary and secondary sources and new, green routes for their isolation and purification. The book also addresses their utilization, re-use, reduction, and recycling policies that exist globally. Applications in metallurgy, magnets, ceramics, electronics, and chemical, optical, and nuclear technologies are discussed.
This collection presents papers from a symposium on extraction of rare metals from primary and secondary materials and residues as well as rare extraction processing techniques used in metal production. Authors cover the extraction of less common or minor metals including elements such as antimony, bismuth, barium, beryllium, boron, calcium, chromium, gallium, germanium, hafnium, indium, manganese, molybdenum, platinum group metals, rare earth metals, rhenium, scandium, selenium, sodium, strontium, tantalum, tellurium, and tungsten. Contributions also discuss rare metals of low-tonnage sales compared to high-tonnage metals (iron, copper, nickel, lead, tin, zinc, or light metals such as aluminum, magnesium, or titanium and electronic metalloid silicon). Authors also cover biometallurgy, hydrometallurgy, and electrometallurgy while novel high-temperature processes such as microwave heating, solar-thermal reaction synthesis, and cold crucible synthesis of rare metals are addressed. Also included in this collection is the design of extraction equipment used in these processes from suppliers as well as laboratory and pilot plant studies.
Topics on CO2 sequestration and reduction in greenhouse gas emissions from process engineering and materials for clean energy are covered. Papers addressing sustainable technologies in extractive metallurgy, materials processing and manufacturing industries with reduced energy consumption and CO2 emission are also included, as well as industrial energy efficient technologies including innovative ore beneficiation, smelting technologies, recycling and waste heat recovery. The book also carries contributions from all areas of non-nuclear and non-traditional energy sources, including renewable energy sources such as solar, wind, biomass, etc. The book also emphasizes novel mineral beneficiation, processing, and extraction techniques leading to waste minimization of critical rare-earth materials used in energy systems (e.g., magnets, display and lighting devices). Papers from the following symposia are presented in the book: Energy Technologies and Carbon Dioxide Management High-temperature Systems for Energy Conversion and Storage
How will your life change when the supply of tantalum dries up? You may have never heard of this unusual metal, but without it smartphones would be instantly less omniscient, video game systems would falter, and laptops fail. Tantalum is not alone. Rhodium. Osmium. Niobium. Such refugees from the bottom of the periodic table are key components of many consumer products like cell phones, hybrid car batteries, and flat screen televisions, as well as sophisticated medical devices and even weapon systems. Their versatile properties have led manufacturers to seek these elements out to maximize longevity, value, and efficiency, but not without a human price. In addition to explaining the chemistry behind rare earth metals, Rare delves into the economic and geopolitical issues surrounding these “conflict minerals,” blending tales of financial and political struggles with glimpses into the human lives that are shattered by the race to secure them. In the past decade, the Congo has been ravaged by tribal wars fought to obtain control of tantalum, tungsten, and tin supplies in the region, with over five million people dying at the crossroads of supply and demand. A burgeoning black market in China, Africa, and India is propped up by school-age children retrieving and purifying these metals while risking their lives and health in the process. Fears of future political struggles inside China, the world’s largest supplier of these metals, have already sent the United States, Great Britain, and Japan racing to find alternative sources. Will scientists be able to create lab substitutes for some or all of these metals? Will Afghanistan be the next big supplier of rare metals? What happens when the limited supply runs out? Whatever the answers, it is clear that our modern lifestyle, dependent on technology, is far from stable.
The Magnesium Technology Symposium, the event on which this collection is based, is one of the largest yearly gatherings of magnesium specialists in the world. Papers represent all aspects of the field, ranging from primary production to applications to recycling. Moreover, papers explore everything from basic research findings to industrialization. Magnesium Technology 2016 covers a broad spectrum of current topics, including alloys and their properties; cast products and processing; wrought products and processing; forming, joining, and machining; corrosion and surface finishing; ecology; and structural applications. In addition, there is coverage of new and emerging applications. The collection includes more than 50 papers.