Download Free Random Walk Models And Probabilistic Techniques For Inhomogeneous Polymer Chains Book in PDF and EPUB Free Download. You can read online Random Walk Models And Probabilistic Techniques For Inhomogeneous Polymer Chains and write the review.

Random polymer models and their applications -- The homogeneous pinning model -- Weakly inhomogeneous models -- The free energy of disordered polymer chains -- Disordered pinning models: The hase diagram -- Disordered copolymers and selective interfaces: The phase diagram -- The localized phase of disordered polymers -- The delocalized phase of disordered polymers -- Numerical algorithms and computations
Issues in Logic, Probability, Combinatorics, and Chaos Theory: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Chaos Research. The editors have built Issues in Logic, Probability, Combinatorics, and Chaos Theory: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Chaos Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Logic, Probability, Combinatorics, and Chaos Theory: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
This volume introduces readers to the world of disordered systems and to some of the remarkable probabilistic techniques developed in the field. The author explores in depth a class of directed polymer models to which much attention has been devoted in the last 25 years, in particular in the fields of physical and biological sciences. The models treated have been widely used in studying, for example, the phenomena of polymer pinning on a defect line, the behavior of copolymers in proximity to an interface between selective solvents and the DNA denaturation transition. In spite of the apparent heterogeneity of this list, in mathematical terms, a unified vision emerges. One is in fact dealing with the natural statistical mechanics systems built on classical renewal sequences by introducing one-body potentials. This volume is also a self-contained mathematical account of the state of the art for this class of statistical mechanics models.
Random walks have proven to be a useful model in understanding processes across a wide spectrum of scientific disciplines. Elements of the Random Walk is an introduction to some of the most powerful and general techniques used in the application of these ideas. The mathematical construct that runs through the analysis of the topics covered in this book, unifying the mathematical treatment, is the generating function. Although the reader is introduced to analytical tools, such as path-integrals and field-theoretical formalism, the book is self-contained in that basic concepts are developed and relevant fundamental findings fully discussed. Mathematical background is provided in supplements at the end of each chapter, when appropriate. This text will appeal to graduate students across science, engineering and mathematics who need to understand the applications of random walk techniques, as well as to established researchers.
Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.