Download Free Random Phenomena Book in PDF and EPUB Free Download. You can read online Random Phenomena and write the review.

Many of the problems that engineers face involve randomly varying phenomena of one sort or another. However, if characterized properly, even such randomness and the resulting uncertainty are subject to rigorous mathematical analysis. Taking into account the uniquely multidisciplinary demands of 21st-century science and engineering, Random Phenomena: Fundamentals of Probability and Statistics for Engineers provides students with a working knowledge of how to solve engineering problems that involve randomly varying phenomena. Basing his approach on the principle of theoretical foundations before application, Dr. Ogunnaike presents a classroom-tested course of study that explains how to master and use probability and statistics appropriately to deal with uncertainty in standard problems and those that are new and unfamiliar. Giving students the tools and confidence to formulate practical solutions to problems, this book offers many useful features, including: Unique case studies to illustrate the fundamentals and applications of probability and foster understanding of the random variable and its distribution Examples of development, selection, and analysis of probability models for specific random variables Presentation of core concepts and ideas behind statistics and design of experiments Selected "special topics," including reliability and life testing, quality assurance and control, and multivariate analysis As classic scientific boundaries continue to be restructured, the use of engineering is spilling over into more non-traditional areas, ranging from molecular biology to finance. This book emphasizes fundamentals and a "first principles" approach to deal with this evolution. It illustrates theory with practical examples and case studies, equipping readers to deal with a wide range of problems beyond those in the book. About the Author: Professor Ogunnaike is Interim Dean of Engineering at the University of Delaware. He is the recipient of the 2008 American Automatic Control Council's Control Engineering Practice Award, the ISA's Donald P. Eckman Education Award, the Slocomb Excellence in Teaching Award, and was elected into the US National Academy of Engineering in 2012.
Integrates traditional statistical data analysis with new computational experimentation capabilities and concepts of algorithmic complexity and chaotic behavior in nonlinear dynamic systems, offering tools for the study of random phenomena occurring in engineering and the natural, life, and social sciences. Each chapter presents experiments, exercises, and projects using the Mathematica Uncertain Virtual Worlds software packages. Large and original real-life data sets are introduced and analyzed as a model for independent study. Includes brief tutorials on using Mathematica programs. Intended as a text for an introductory level statistics course. Prerequisites include calculus and basic computer programming. Annotation copyrighted by Book News, Inc., Portland, OR
This volume highlights recent developments of stochastic analysis with a wide spectrum of applications, including stochastic differential equations, stochastic geometry, and nonlinear partial differential equations.While modern stochastic analysis may appear to be an abstract mixture of classical analysis and probability theory, this book shows that, in fact, it can provide versatile tools useful in many areas of applied mathematics where the phenomena being described are random. The geometrical aspects of stochastic analysis, often regarded as the most promising for applications, are specially investigated by various contributors to the volume.
The purpose of this book is twofold: first, it sets out to equip the reader with a sound understanding of the foundations of probability theory and stochastic processes, offering step-by-step guidance from basic probability theory to advanced topics, such as stochastic differential equations, which typically are presented in textbooks that require a very strong mathematical background. Second, while leading the reader on this journey, it aims to impart the knowledge needed in order to develop algorithms that simulate realistic physical systems. Connections with several fields of pure and applied physics, from quantum mechanics to econophysics, are provided. Furthermore, the inclusion of fully solved exercises will enable the reader to learn quickly and to explore topics not covered in the main text. The book will appeal especially to graduate students wishing to learn how to simulate physical systems and to deepen their knowledge of the mathematical framework, which has very deep connections with modern quantum field theory.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes.
Simple random walks - or equivalently, sums of independent random vari ables - have long been a standard topic of probability theory and mathemat ical physics. In the 1950s, non-Markovian random-walk models, such as the self-avoiding walk,were introduced into theoretical polymer physics, and gradu ally came to serve as a paradigm for the general theory of critical phenomena. In the past decade, random-walk expansions have evolved into an important tool for the rigorous analysis of critical phenomena in classical spin systems and of the continuum limit in quantum field theory. Among the results obtained by random-walk methods are the proof of triviality of the cp4 quantum field theo ryin space-time dimension d (::::) 4, and the proof of mean-field critical behavior for cp4 and Ising models in space dimension d (::::) 4. The principal goal of the present monograph is to present a detailed review of these developments. It is supplemented by a brief excursion to the theory of random surfaces and various applications thereof. This book has grown out of research carried out by the authors mainly from 1982 until the middle of 1985. Our original intention was to write a research paper. However, the writing of such a paper turned out to be a very slow process, partly because of our geographical separation, partly because each of us was involved in other projects that may have appeared more urgent.
Designed for students majoring in the life, health, and natural sciences, Statistics: Concepts and Applications for Science is a text and workbook package that introduces statistics with an important emphasis on the real-world applications of statistical reasoning and procedures. Through intensive exposure to the core concepts of statistics in the context of science, students acquire the skills and understanding they need to formulate valid research designs, implement statistical analysis, interpret data, and explain their results.
This book highlights mathematical research interests that appear in real life, such as the study and modeling of random and deterministic phenomena. As such, it provides current research in mathematics, with applications in biological and environmental sciences, ecology, epidemiology and social perspectives. The chapters can be read independently of each other, with dedicated references specific to each chapter. The book is organized in two main parts. The first is devoted to some advanced mathematical problems regarding epidemic models; predictions of biomass; space-time modeling of extreme rainfall; modeling with the piecewise deterministic Markov process; optimal control problems; evolution equations in a periodic environment; and the analysis of the heat equation. The second is devoted to a modelization with interdisciplinarity in ecological, socio-economic, epistemological, demographic and social problems. Mathematical Modeling of Random and Deterministic Phenomena is aimed at expert readers, young researchers, plus graduate and advanced undergraduate students who are interested in probability, statistics, modeling and mathematical analysis.
This monograph investigates violations of statistical stability of physical events, variables, and processes and develops a new physical-mathematical theory taking into consideration such violations – the theory of hyper-random phenomena. There are five parts. The first describes the phenomenon of statistical stability and its features, and develops methods for detecting violations of statistical stability, in particular when data is limited. The second part presents several examples of real processes of different physical nature and demonstrates the violation of statistical stability over broad observation intervals. The third part outlines the mathematical foundations of the theory of hyper-random phenomena, while the fourth develops the foundations of the mathematical analysis of divergent and many-valued functions. The fifth part contains theoretical and experimental studies of statistical laws where there is violation of statistical stability. The monograph should be of particular interest to engineers and scientists in general who study the phenomenon of statistical stability and use statistical methods for high-precision measurements, prediction, and signal processing over long observation intervals.
Basic Statistics with R: Reaching Decisions with Data provides an understanding of the processes at work in using data for results. Sections cover data collection and discuss exploratory analyses, including visual graphs, numerical summaries, and relationships between variables - basic probability, and statistical inference - including hypothesis testing and confidence intervals. All topics are taught using real-data drawn from various fields, including economics, biology, political science and sports. Using this wide variety of motivating examples allows students to directly connect and make statistics essential to their field of interest, rather than seeing it as a separate and ancillary knowledge area. In addition to introducing students to statistical topics using real data, the book provides a gentle introduction to coding, having the students use the statistical language and software R. Students learn to load data, calculate summary statistics, create graphs and do statistical inference using R with either Windows or Macintosh machines. - Features real-data to give students an engaging practice to connect with their areas of interest - Evolves from basic problems that can be worked by hand to the elementary use of opensource R software - Offers a direct, clear approach highlighted by useful visuals and examples