Download Free Random Number Generation And Quasi Monte Carlo Methods Book in PDF and EPUB Free Download. You can read online Random Number Generation And Quasi Monte Carlo Methods and write the review.

Tremendous progress has taken place in the related areas of uniform pseudorandom number generation and quasi-Monte Carlo methods in the last five years. This volume contains recent important work in these two areas, and stresses the interplay between them. Some developments contained here have never before appeared in book form. Includes the discussion of the integrated treatment of pseudorandom numbers and quasi-Monte Carlo methods; the systematic development of the theory of lattice rules and the theory of nets and (t,s)-sequences; the construction of new and better low-discrepancy point sets and sequences; Nonlinear congruential methods; the initiation of a systematic study of methods for pseudorandom vector generation; and shift-register pseudorandom numbers. Based on a series of 10 lectures presented by the author at a CBMS-NSF Regional Conference at the University of Alaska at Fairbanks in 1990 to a selected group of researchers, this volume includes background material to make the information more accessible to nonspecialists.
Monte Carlo simulation has become one of the most important tools in all fields of science. This book surveys the basic techniques and principles of the subject, as well as general techniques useful in more complicated models and in novel settings. The emphasis throughout is on practical methods that work well in current computing environments.
This volume contains recent work in uniform pseudorandom number generation and quasi-Monte Carlo methods, and stresses the interplay between them.
Scientists and engineers are increasingly making use of simulation methods to solve problems which are insoluble by analytical techniques. Monte Carlo methods which make use of probabilistic simulations are frequently used in areas such as numerical integration, complex scheduling, queueing networks, and large-dimensional simulations. This collection of papers arises from a conference held at the University of Nevada, Las Vegas, in 1994. The conference brought together researchers across a range of disciplines whose interests include the theory and application of these methods. This volume provides a timely survey of this field and the new directions in which the field is moving.
Monte Carlo methods are numerical methods based on random sampling and quasi-Monte Carlo methods are their deterministic versions. This volume contains the refereed proceedings of the Second International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing which was held at the University of Salzburg (Austria) from July 9--12, 1996. The conference was a forum for recent progress in the theory and the applications of these methods. The topics covered in this volume range from theoretical issues in Monte Carlo and simulation methods, low-discrepancy point sets and sequences, lattice rules, and pseudorandom number generation to applications such as numerical integration, numerical linear algebra, integral equations, binary search, global optimization, computational physics, mathematical finance, and computer graphics. These proceedings will be of interest to graduate students and researchers in Monte Carlo and quasi-Monte Carlo methods, to numerical analysts, and to practitioners of simulation methods.
Monte Carlo simulation has become one of the most important tools in all fields of science. Simulation methodology relies on a good source of numbers that appear to be random. These "pseudorandom" numbers must pass statistical tests just as random samples would. Methods for producing pseudorandom numbers and transforming those numbers to simulate samples from various distributions are among the most important topics in statistical computing. This book surveys techniques of random number generation and the use of random numbers in Monte Carlo simulation. The book covers basic principles, as well as newer methods such as parallel random number generation, nonlinear congruential generators, quasi Monte Carlo methods, and Markov chain Monte Carlo. The best methods for generating random variates from the standard distributions are presented, but also general techniques useful in more complicated models and in novel settings are described. The emphasis throughout the book is on practical methods that work well in current computing environments. The book includes exercises and can be used as a test or supplementary text for various courses in modern statistics. It could serve as the primary test for a specialized course in statistical computing, or as a supplementary text for a course in computational statistics and other areas of modern statistics that rely on simulation. The book, which covers recent developments in the field, could also serve as a useful reference for practitioners. Although some familiarity with probability and statistics is assumed, the book is accessible to a broad audience. The second edition is approximately 50% longer than the first edition. It includes advances in methods for parallel random number generation, universal methods for generation of nonuniform variates, perfect sampling, and software for random number generation.
A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.
This textbook introduces readers to the basic concepts of quasi-Monte Carlo methods for numerical integration and to the theory behind them. The comprehensive treatment of the subject with detailed explanations comprises, for example, lattice rules, digital nets and sequences and discrepancy theory. It also presents methods currently used in research and discusses practical applications with an emphasis on finance-related problems. Each chapter closes with suggestions for further reading and with exercises which help students to arrive at a deeper understanding of the material presented. The book is based on a one-semester, two-hour undergraduate course and is well-suited for readers with a basic grasp of algebra, calculus, linear algebra and basic probability theory. It provides an accessible introduction for undergraduate students in mathematics or computer science.
This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.
Quasi–Monte Carlo methods have become an increasingly popular alternative to Monte Carlo methods over the last two decades. Their successful implementation on practical problems, especially in finance, has motivated the development of several new research areas within this field to which practitioners and researchers from various disciplines currently contribute. This book presents essential tools for using quasi–Monte Carlo sampling in practice. The first part of the book focuses on issues related to Monte Carlo methods—uniform and non-uniform random number generation, variance reduction techniques—but the material is presented to prepare the readers for the next step, which is to replace the random sampling inherent to Monte Carlo by quasi–random sampling. The second part of the book deals with this next step. Several aspects of quasi-Monte Carlo methods are covered, including constructions, randomizations, the use of ANOVA decompositions, and the concept of effective dimension. The third part of the book is devoted to applications in finance and more advanced statistical tools like Markov chain Monte Carlo and sequential Monte Carlo, with a discussion of their quasi–Monte Carlo counterpart. The prerequisites for reading this book are a basic knowledge of statistics and enough mathematical maturity to follow through the various techniques used throughout the book. This text is aimed at graduate students in statistics, management science, operations research, engineering, and applied mathematics. It should also be useful to practitioners who want to learn more about Monte Carlo and quasi–Monte Carlo methods and researchers interested in an up-to-date guide to these methods.