Download Free Random And Restricted Walks Book in PDF and EPUB Free Download. You can read online Random And Restricted Walks and write the review.

A central study in Probability Theory is the behavior of fluctuation phenomena of partial sums of different types of random variable. One of the most useful concepts for this purpose is that of the random walk which has applications in many areas, particularly in statistical physics and statistical chemistry. Originally published in 1991, Intersections of Random Walks focuses on and explores a number of problems dealing primarily with the nonintersection of random walks and the self-avoiding walk. Many of these problems arise in studying statistical physics and other critical phenomena. Topics include: discrete harmonic measure, including an introduction to diffusion limited aggregation (DLA); the probability that independent random walks do not intersect; and properties of walks without self-intersections. The present softcover reprint includes corrections and addenda from the 1996 printing, and makes this classic monograph available to a wider audience. With a self-contained introduction to the properties of simple random walks, and an emphasis on rigorous results, the book will be useful to researchers in probability and statistical physics and to graduate students interested in basic properties of random walks.
Random walks are stochastic processes formed by successive summation of independent, identically distributed random variables and are one of the most studied topics in probability theory. This contemporary introduction evolved from courses taught at Cornell University and the University of Chicago by the first author, who is one of the most highly regarded researchers in the field of stochastic processes. This text meets the need for a modern reference to the detailed properties of an important class of random walks on the integer lattice. It is suitable for probabilists, mathematicians working in related fields, and for researchers in other disciplines who use random walks in modeling.
For over half a century, financial experts have regarded the movements of markets as a random walk--unpredictable meanderings akin to a drunkard's unsteady gait--and this hypothesis has become a cornerstone of modern financial economics and many investment strategies. Here Andrew W. Lo and A. Craig MacKinlay put the Random Walk Hypothesis to the test. In this volume, which elegantly integrates their most important articles, Lo and MacKinlay find that markets are not completely random after all, and that predictable components do exist in recent stock and bond returns. Their book provides a state-of-the-art account of the techniques for detecting predictabilities and evaluating their statistical and economic significance, and offers a tantalizing glimpse into the financial technologies of the future. The articles track the exciting course of Lo and MacKinlay's research on the predictability of stock prices from their early work on rejecting random walks in short-horizon returns to their analysis of long-term memory in stock market prices. A particular highlight is their now-famous inquiry into the pitfalls of "data-snooping biases" that have arisen from the widespread use of the same historical databases for discovering anomalies and developing seemingly profitable investment strategies. This book invites scholars to reconsider the Random Walk Hypothesis, and, by carefully documenting the presence of predictable components in the stock market, also directs investment professionals toward superior long-term investment returns through disciplined active investment management.
Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.
The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.
This open access book focuses on the interplay between random walks on planar maps and Koebe’s circle packing theorem. Further topics covered include electric networks, the He–Schramm theorem on infinite circle packings, uniform spanning trees of planar maps, local limits of finite planar maps and the almost sure recurrence of simple random walks on these limits. One of its main goals is to present a self-contained proof that the uniform infinite planar triangulation (UIPT) is almost surely recurrent. Full proofs of all statements are provided. A planar map is a graph that can be drawn in the plane without crossing edges, together with a specification of the cyclic ordering of the edges incident to each vertex. One widely applicable method of drawing planar graphs is given by Koebe’s circle packing theorem (1936). Various geometric properties of these drawings, such as existence of accumulation points and bounds on the radii, encode important probabilistic information, such as the recurrence/transience of simple random walks and connectivity of the uniform spanning forest. This deep connection is especially fruitful to the study of random planar maps. The book is aimed at researchers and graduate students in mathematics and is suitable for a single-semester course; only a basic knowledge of graduate level probability theory is assumed.
The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.
The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
This block explores the diffusion equation which is most commonly encountered in discussions of the flow of heat and of molecules moving in liquids, but diffusion equations arise from many different areas of applied mathematics. As well as considering the solutions of diffusion equations in detail, we also discuss the microscopic mechanism underlying the diffusion equation, namely that particles of matter or heat move erratically. This involves a discussion of elementary probability and statistics, which are used to develop a description of random walk processes and of the central limit theorem. These concepts are used to show that if particles follow random walk trajectories, their density obeys the diffusion equation.