Download Free Raman Spectroscopy In Graphene Related Systems Book in PDF and EPUB Free Download. You can read online Raman Spectroscopy In Graphene Related Systems and write the review.

Raman spectroscopy is the inelastic scattering of light by matter. Being highly sensitive to the physical and chemical properties of materials, as well as to environmental effects that change these properties, Raman spectroscopy is now evolving into one of the most important tools for nanoscience and nanotechnology. In contrast to usual microscopyrelated techniques, the advantages of using light for nanoscience relate to both experimental and fundamental aspects.
First volume of a 40-volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Raman spectroscopy for the characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume essential reading for research scientists in academia and industry.
Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.
Raman spectroscopy has a number of applications in various fields including material science, physics, chemistry, biology, geology, and medicine. This book illustrates necessary insight and guidance in the field of Raman spectroscopy with detailed figures and explanations. This presents deep understanding of new techniques from basic introduction to the advance level for scientists and engineers. The chapters cover all major aspects of Raman spectroscopy and its application in material characterization with special emphasis on both the theoretical and experimental aspects. This book is aimed to provide solid foundation of Raman spectroscopy to the students, scientists, and engineers working in various fields as mentioned above.
This book gives a wide overview of the state-of-the-art applications of Raman spectroscopy in characterization of materials and biomaterials. The Raman signal is intrinsically smaller than other vibrational techniques; however, mainly through intensification processes, such as resonance Raman (RR) and surface-enhanced Raman spectroscopy (SERS), the Raman cross section can be strongly amplified. Thoroughly in these signal amplifications, the study of a diversity of chemical systems and the use of Raman technique for in situ and in vivo measurements is possible. The main goal of this book is to open up to an extended audience the possibilities of uses of Raman spectroscopy. In fact, this collective work will be beneficial to students, teachers, and researchers of many areas who are interested to expand their knowledge about Raman spectroscopy applied to nanotechnology, biotechnology, environmental science, inorganic chemistry, and health sciences.
All set to become the standard reference on the topic, this book covers the most important procedures for chemical functionalization, making it an indispensable resource for all chemists, physicists, materials scientists and engineers entering or already working in the field. Expert authors share their knowledge on a wide range of different functional groups, including organic functional groups, hydrogen, halogen, nanoparticles and polymers.
Coulomb Excitations and Decays in Graphene-Related Systems provides an overview of the subject under the effects of lattice symmetries, layer numbers, dimensions, stacking configurations, orbital hybridizations, intralayer and interlayer hopping integrals, spin-orbital couplings, temperatures, electron/hole dopings, electric field, and magnetic quantization while presenting a new theoretical framework of the electronic properties and the electron-electron interactions together. This book presents a well-developed theoretical model and addresses important advances in essential properties and diverse excitation phenomena. Covering plenty of critical factors related to the field, the book also addresses the theoretical model which is applicable to various dimension-enriched graphene-related systems and other 2D materials, including layered graphenes, graphites, carbon nanotubes, silicene, and germanene. The text is aimed at professionals in materials science, physics, physical chemistry, and upper level students in these fields.
The discovery of fullerenes (also known as buckyballs) has generated tremendous excitement and opened up a new field of carbon chemistry. As the first book available on this topic, this volume will be a landmark reference in the field. Because buckyballs are essentially closed hollow cages made up of carbon atoms, they can be manipulated in a variety of ways to yield never-before-seen materials. The balls can, for instance, be doped with atoms or pulled out into tubules and filled with lead to provide properties of high-temperature superconductivity. Researchers can now create their own buckyballs in a process that is almost as simple as making soot, making this research as inexpensive as it is exotic (which has doubtless contributed to its popularity). Researchers anticipate that fullerenes will offer boundless opportunities in the development of new products, drugs and materials. Science of Fullerenes and Carbon Nanotubes introduces materials scientists, chemists, and solid state physicists to the field of fullerenes, and discusses the unique properties and applications. both current and future, of all classes of fullerenes. Key Features * First comprehensive resource on fullerenes and their applications * Provides an introduction to the topic * Presents an extensive discussion of current and future applications of Fullerenes * Covers all classes of fullerenes
Minimaler Aufwand bei der Probenvorbereitung, hoher Informationsgehalt des Spektrums und die Möglichkeit, mit festen Proben zu arbeiten, machen die Raman-Spektroskopie zunehmend attraktiv. Wie man diese Methode mit modernster Ausrüstung effizient anwendet, zeigt Ihnen das vorliegende Buch. Im Mittelpunkt stehen neue Entwicklungen wie CCDs, Diodenlaser und Fourier-Transform-Techniken. Behandelt werden auch quantitative Analysen, die in der bisher vorhandenen Literatur häufig zu kurz kamen. (08/00)
This is a classic text of its time in condensed matter physics.