Download Free Raman Spectroscopy And Its Application In Nanostructures Book in PDF and EPUB Free Download. You can read online Raman Spectroscopy And Its Application In Nanostructures and write the review.

Raman Spectroscopy and its Application in Nanostructures is an original and timely contribution to a very active area of physics and materials science research. This book presents the theoretical and experimental phenomena of Raman spectroscopy, with specialized discussions on the physical fundamentals, new developments and main features in low-dimensional systems of Raman spectroscopy. In recent years physicists, materials scientists and chemists have devoted increasing attention to low-dimensional systems and as Raman spectroscopy can be used to study and analyse such materials as carbon nanotubes, quantum wells, silicon nanowires, etc., it is fast becoming one of the most powerful and sensitive experimental techniques to characterize the qualities of such nanostructures. Recent scientific and technological developments have resulted in the applications of Raman spectroscopy to expand. These developments are vital in providing information for a very broad field of applications: for example in microelectronics, biology, forensics and archaeology. Thus, this book not only introduces these important new branches of Raman spectroscopy from both a theoretical and practical view point, but the resulting effects are fully explored and relevant representative models of Raman spectra are described in-depth with the inclusion of theoretical calculations, when appropriate.
First volume of a 40-volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Raman spectroscopy for the characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume essential reading for research scientists in academia and industry.
In the last couple of decades, high-performance electronic and optoelectronic devices based on semiconductor heterostructures have been required to obtain increasingly strict and well-defined performances, needing a detailed control, at the atomic level, of the structural composition of the buried interfaces. This goal has been achieved by an improvement of the epitaxial growth techniques and by the parallel use of increasingly sophisticated characterization techniques and of refined theoretical models based on ab initio approaches. This book deals with description of both characterization techniques and theoretical models needed to understand and predict the structural and electronic properties of semiconductor heterostructures and nanostructures. - Comprehensive collection of the most powerful characterization techniques for semiconductor heterostructures and nanostructures - Most of the chapters are authored by scientists that are among the top 10 worldwide in publication ranking of the specific field - Each chapter starts with a didactic introduction on the technique - The second part of each chapter deals with a selection of top examples highlighting the power of the specific technique to analyze the properties of semiconductors
Surface-Enhanced Raman Spectroscopy: Principles, Experiments, and Applications is a comprehensive, up to date, and balanced treatment of the theoretical and practical aspects of Surface-Enhanced Raman Scattering (SERS), a useful branch of spectroscopy for several areas of science. This book describes the basic principles of SERS, including SERS mechanisms, performing SERS measurements, and interpreting data. Also emphasized are applications in electrochemistry; catalysis; surface processing and corrosion; Self-Assemble-Layer and L-B Films; polymer science; biology; medicine and drug analysis; sensors; fuel cells; forensics; and archaeology. It is an essential guide for student and professional analytical chemists.
Almost 30 years after the first reports on surface-enhanced Raman signals, the phenomenon of surface-enhanced Raman scattering (SERS) is now well established. SERS gained particular interest after single-molecule Raman spectroscopy had been demonstrated. This book summarizes and discusses present theoretical approaches that explain the phenomenon of SERS and reports on new and exciting experiments and applications of the fascinating spectroscopic effect.
Surface Enhanced Vibrational Spectroscopy (SEVS) has reached maturity as an analytical technique, but until now there has been no single work that describes the theory and experiments of SEVS. This book combines the two important techniques of surface-enhanced Raman scattering (SERS) and surface-enhanced infrared (SEIR) into one text that serves as the definitive resource on SEVS. Discusses both the theory and the applications of SEVS and provides an up-to-date study of the state of the art Offers interpretations of SEVS spectra for practicing analysts Discusses interpretation of SEVS spectra, which can often be very different to the non-enhanced spectrum - aids the practicing analyst
This book presents invited reviews and original short notes of recent results obtained in studies concerning the fabrication and application of nanostructures, which hold great promise for the new generation of electronic, optoelectronic and energy conversion devices. They present achievements discussed at Special Sessions 'Frontiers of Molecular Diagnostics with Nanostructures' and 'Nanoelectromagnetics' organized within Nanomeeting-2017.Discussing exciting and relatively new topics such as fast-progressing nanoelectronics and optoelectronics, molecular electronics and spintronics, nanoelectromagnetics, nanophotonics, nanosensorics and nanoenergetics as well as nanotechnology and quantum processing of information, this book gives readers a more complete understanding of the practical applications of nanotechnology and nanostructures.
Raman spectroscopy is the inelastic scattering of light by matter. Being highly sensitive to the physical and chemical properties of materials, as well as to environmental effects that change these properties, Raman spectroscopy is now evolving into one of the most important tools for nanoscience and nanotechnology. In contrast to usual microscopyrelated techniques, the advantages of using light for nanoscience relate to both experimental and fundamental aspects.
Micro-Raman Spectroscopy introduces readers to the theory and application of Raman microscopy. Raman microscopy is used to study the chemical signature of samples with little preperation in a non-destructive manner. An easy to use technique with ever increasing technological advances, Micro-Raman has significant application for researchers in the fields of materials science, medicine, pharmaceuticals, and chemistry.
Dielectric Metamaterials: Fundamentals, Designs, and Applications links fundamental Mie scattering theory with the latest dielectric metamaterial research, providing a valuable reference for new and experienced researchers in the field. The book begins with a historical, evolving overview of Mie scattering theory. Next, the authors describe how to apply Mie theory to analytically solve the scattering of electromagnetic waves by subwavelength particles. Later chapters focus on Mie resonator-based metamaterials, starting with microwaves where particles are much smaller than the free space wavelengths. In addition, several chapters focus on wave-front engineering using dielectric metasurfaces and the nonlinear optical effects, spontaneous emission manipulation, active devices, and 3D effective media using dielectric metamaterials.