Download Free Radionuclide Distribution And Transport In Terrestrial And Aquatic Ecosystems A Critical Review Of Data Book in PDF and EPUB Free Download. You can read online Radionuclide Distribution And Transport In Terrestrial And Aquatic Ecosystems A Critical Review Of Data and write the review.

As the debate about the environmental cost of nuclear power and the issue of nuclear safety continues, a comprehensive assessment of the Chernobyl accident, its long-term environmental consequences and solutions to the problems found, is timely. Although many books have been published which discuss the accident itself and the immediate emergency response in great detail, none have dealt primarily with the environmental issues involved. The authors provide a detailed review of the long-term environmental consequences, in a wide range of ecosystems, many of which are only now becoming apparent. They also highlight responses and counter-measures to combat the environmental consequences and discuss health, social, psychological and economic impacts on the human population as well as the long-term effects on biota.
The Radioactivity in the Environment Series addresses the key aspects of this socially important and complex interdisciplinary subject. Presented objectively and with the ultimate authority gained from the many contributions by the world's leading experts, the negative and positive consequences of having a radioactive world around us is documented and given perspective. In a world in which nuclear science is not only less popular than in the past, but also less extensively taught in universities and colleges, this book series will fill a significant educational gap. Radioactivity in the Terrestrial Environment presents an updated and critical review of designing, siting, constructing and demonstrating the safety and environmental impact of deep repositories for radioactive wastes. It is structured to provide a broad perspective of this multi-faceted, multi-disciplinary topic providing enough detail for a non-specialist to understand the fundamental principles involved. Contains extensive references to sources of more detailed information Provides a detailed summary of radioactivity in terrestrial ecosystems, providing a substantial and essential reference on the subject Discusses lesser-known sources of radiation exposure that provide useful information for those seeking to place environmental radioactivity into perspective
This book provides extensive and comprehensive information to researchers and academicians who are interested in radionuclide contamination, its sources and environmental impact. It is also useful for graduate and undergraduate students specializing in radioactive-waste disposal and its impact on natural as well as manmade environments. A number of sites are affected by large legacies of waste from the mining and processing of radioactive minerals. Over recent decades, several hundred radioactive isotopes (radioisotopes) of natural elements have been produced artificially, including 90Sr, 137Cs and 131I. Several other anthropogenic radioactive elements have also been produced in large quantities, for example technetium, neptunium, plutonium and americium, although plutonium does occur naturally in trace amounts in uranium ores. The deposition of radionuclides on vegetation and soil, as well as the uptake from polluted aquifers (root uptake or irrigation) are the initial point for their transfer into the terrestrial environment and into food chains. There are two principal deposition processes for the removal of pollutants from the atmosphere: dry deposition is the direct transfer through absorption of gases and particles by natural surfaces, such as vegetation, whereas showery or wet deposition is the transport of a substance from the atmosphere to the ground by snow, hail or rain. Once deposited on any vegetation, radionuclides are removed from plants by the airstre am and rain, either through percolation or by cuticular scratch. The increase in biomass during plant growth does not cause a loss of activity, but it does lead to a decrease in activity concentration due to effective dilution. There is also systemic transport (translocation) of radionuclides within the plant subsequent to foliar uptake, leading the transfer of chemical components to other parts of the plant that have not been contaminated directly.
This book focuses on the mechanistic (microscopic) understanding of radionuclide uptake by plants in contaminated soils and potential use of phytoremediation. The key features concern radionuclide toxicity in plants, how the radioactive materials are absorbed by plants, and how the plants cope with the toxic responses. The respective chapters examine soil classification, natural plant selection, speciation of actinides, kinetic modeling, and case studies on cesium uptake after radiation accidents. Radionuclide contaminants pose serious problems for biological systems, due to their chemical toxicity and radiological effects. The processes by which radionuclides can be incorporated into vegetation can either originate from activity interception by external plant surfaces (either directly from the atmosphere or from resuspended material), or through uptake of radionuclides via the root system. Subsequent transfer of toxic elements to the human food chain is a concrete danger. Therefore, the molecular mechanisms and genetic basis of transport into and within plants needs to be understood for two reasons: The effectiveness of radionuclide uptake into crop plants – so-called transfer coefficient – is a prerequisite for the calculation of dose due to the food path. On the other hand, efficient radionuclide transfer into plants can be made use of for decontamination of land – so-called phytoremediation, the direct use of living, green plants for in situ removal of pollutants from the environment or to reduce their concentrations to harmless levels.