Download Free Radionuclide Behaviour In The Natural Environment Book in PDF and EPUB Free Download. You can read online Radionuclide Behaviour In The Natural Environment and write the review.

Understanding radionuclide behaviour in the natural environment is essential to the sustainable development of the nuclear industry and key to assessing potential environmental risks reliably. Minimising those risks is essential to enhancing public confidence in nuclear technology. Scientific knowledge in this field has developed greatly over the last decade.Radionuclide behaviour in the natural environment provides a comprehensive overview of the key processes and parameters affecting radionuclide mobility and migration.After an introductory chapter, part one explores radionuclide chemistry in the natural environment, including aquatic chemistry and the impact of natural organic matter and microorganisms. Part two discusses the migration and radioecological behavior of radionuclides. Topics include hydrogeology, sorption and colloidal reactions as well as in-situ investigations. Principles of modelling coupled geochemical, transport and radioecological properties are also discussed. Part three covers application issues: assessment of radionuclide behaviour in contaminated sites, taking Chernobyl as an example, estimation of radiological exposure to the population, performance assessment considerations related to deep geological repositories, and remediation concepts for contaminated sites.With its distinguished editors and international team of expert contributors, Radionuclide behaviour in the natural environment is an essential tool for all those interested or involved in nuclear energy, from researchers, designers and industrial operators to environmental scientists. It also provides a comprehensive guide for academics of all levels in this field. - Provides a comprehensive overview of the key processes and parameters affecting radionuclide mobility and migration - Explores radionuclide chemistry in the natural environment - Discusses the migration and radioecological behaviour of radionuclides
The 3-volume set highlights the behavior of radionuclides in the environment and focusing on the development of related fields of study, including microbiology and nanoscience. In this context, it discusses the behavior of radionuclides released in areas of Lake Karachai in Ural, and those released as a result of Chernobyl accident (1986), and in Fukushima (2011). Volume I presents the experiences gained in South Urals (“Mayak” plant, Lake Karachai), providing a scientific basis for more precise understanding of the behavior of radionuclides in complex subsurface environments. On the basis of monitoring data, it examines the pathways of radionuclide migration and the influence of the geological environment and groundwater on the migration, with a particular focus on particles from the nanoscale to microscale. It also discusses the function of microbes and microscale particles, from their direct interaction with radionuclides to their ecological role in changing the physic-chemical condition of a given environment. Lastly, the protective properties of geological media are also characterized, and mathematical modeling of contaminant migration in the area of Lake Karachai is used to provide information regarding the migration of radionuclides.
Environmental Radionuclides presents a state-of-the-art summary of knowledge on the use of radionuclides to study processes and systems in the continental part of the Earth's environment. It is conceived as a companion to the two volumes of this series, which deal with isotopes as tracers in the marine environment (Livingston, Marine Radioactivity) and with the radioecology of natural and man-made terrestrial systems (Shaw, Radioactivity in Terrestrial Ecosystems). Although the book focuses on natural and anthropogenic radionuclides (radioactive isotopes), it also refers to stable environmental isotopes, which in a variety of applications, especially in hydrology and climatology, have to be consulted to evaluate radionuclide measurements in terms of the ages of groundwater and climate archives, respectively. The basic principles underlying the various applications of natural and anthropogenic radionuclides in environmental studies are described in the first part of the book. The book covers the two major groups of applications: the use of radionuclides as tracers for studying transport and mixing processes: and as time markers to address problems of the dynamics of such systems, manifested commonly as the so-called residence time in these systems. The applications range from atmospheric pollution studies, via water resource assessments to contributions to global climate change investigation. The third part of the book addresses new challenges in the development of new methodological approaches, including analytical methods and fields of applications. - A state-of-the-art summary of knowledge on the use of radionuclides - Conceived as a companion to the two volumes of this series, which deal with isotopes as tracers
This book, the third in the series Behavior of Radionuclides in the Environment, is dedicated to Fukushima. Major findings from research since 2011 are reviewed concerning the behavior of radionuclides released into the environment due to the Fukushima Dai-ichi Nuclear Power Plant accident, including atmospheric transport and fallout of radionuclides, their fate, and transport in the soil-water environment, behavior in freshwater, coastal and marine environment, transfer in the terrestrial and agricultural environment. Volume III discusses not only radionuclides dynamics in the environment in the short- and mid-term, but also modeling and prediction of long-term time changes. Along with reviews, the book contains original data and results not published previously. It was spearheaded by the authors from the Institute of Environmental Radioactivity at Fukushima University, established two years after the Fukushima accident, with their collaborators from Japan, Russia, and Ukraine. The knowledge emerging from the studies of the environmental behavior of Fukushima-derived radionuclides enables us to move forward in understanding mechanisms of environmental contamination and leads to better modeling and prediction of long-term pollution effects in general.
This book provides extensive and comprehensive information to researchers and academicians who are interested in radionuclide contamination, its sources and environmental impact. It is also useful for graduate and undergraduate students specializing in radioactive-waste disposal and its impact on natural as well as manmade environments. A number of sites are affected by large legacies of waste from the mining and processing of radioactive minerals. Over recent decades, several hundred radioactive isotopes (radioisotopes) of natural elements have been produced artificially, including 90Sr, 137Cs and 131I. Several other anthropogenic radioactive elements have also been produced in large quantities, for example technetium, neptunium, plutonium and americium, although plutonium does occur naturally in trace amounts in uranium ores. The deposition of radionuclides on vegetation and soil, as well as the uptake from polluted aquifers (root uptake or irrigation) are the initial point for their transfer into the terrestrial environment and into food chains. There are two principal deposition processes for the removal of pollutants from the atmosphere: dry deposition is the direct transfer through absorption of gases and particles by natural surfaces, such as vegetation, whereas showery or wet deposition is the transport of a substance from the atmosphere to the ground by snow, hail or rain. Once deposited on any vegetation, radionuclides are removed from plants by the airstre am and rain, either through percolation or by cuticular scratch. The increase in biomass during plant growth does not cause a loss of activity, but it does lead to a decrease in activity concentration due to effective dilution. There is also systemic transport (translocation) of radionuclides within the plant subsequent to foliar uptake, leading the transfer of chemical components to other parts of the plant that have not been contaminated directly.
Radioactive particles have been released to the environment from a number of sources, including nuclear weapon tests, nuclear accidents and discharges from nuclear installations. Particle characteristics influence the mobility, biological uptake and effects of radionuclides, hence information on these characteristics is essential for assessing environmental impact and risks. This publication presents a series of papers covering sources and source term characterisation, methodologies for characterizing particles, and the impact of particles on the behaviour of radioactive particles in the environment. Sources covered include the Chernobyl accident, nuclear weapons accidents at Thule and Palomares accident, the discharges from Dounreay and Krashnoyarsk, and depleted uranium in Kosovo and Kuwait. The overall aim is that an increased understanding of particle characteristics and behavior will help to reduce some of the uncertainties in environmental impact and risk assessment for particle contaminated areas.
"Our world has been radioactive ever since! Humans are primarily exposed to natural radiation from the sun, cosmic rays, and naturally-occurring radionuclides found in the Earth's crust. Besides the natural radioactivity, industries, which produce radioactive wastes during their normal operations or during their dismantling and decommissioning processes, do contaminate the environment through the release of radionuclides into the air, soil and water. Among them, nuclear power plants, NORM (Naturally Occurring Radioactive Materials) related industries, hospitals, radionuclide production facilities, uranium mining and other nuclear facilities, along with radioactive/nuclear disposal sites are a potential source of environmental contamination by emission/discharging of natural/artificial radionuclides through water, air and soil to the other environmental compartments like plants, animals and foods. In a word, everything that makes our existence! The book "Radionuclides: Properties, Behavior and Potential Health Effects" is a comprehensive overview of some information on radiation in the environment and human exposure to radioactivity. This book highlights the sources, properties, behaviors, and biological and ecological effects of radioactivity from both natural and anthropogenic sources. The emphasis is on the environmental aspects of radionuclides and their eventual effects on biota, particularly humans"--
The Natural Radiation Environment Symposium (NRE VII), the Seventh in the NRE series, which commenced forty years ago in 1963 at Rice University Texas, was held in Rhodes (Greece) in May 2002. During the intervening four decades the research work presented at these NRE Symposia has contributed to a deeper understanding of natural radiation and in particular of its contribution to human radiation exposures.It is clear from the quality and diversity of the 143 papers in this volume of Radioactivity in the Environment series that the study of the natural radiation environment is an active and continually expanding field of research. The papers in this volume fall into a number of main and topical research areas namely: - the measurement and behaviour of natural radionuclides in the environment - cosmic radiation measurement and dosimetry - the external penetrating radiation field at ground level - TENR (Technologically Enhanced Natural Radiation) and NORM (Naturally Occurring Radioactive Materials) studies - assessment of the health effects of radon - regulatory aspects of natural radiation exposuresIn these papers the results of many new surveys of natural radionuclide levels in the environment and of improved methods of detection are described. While some of the natural radiation sources investigated are unmodified by human activity, many accounts are given here of exposures to natural sources which have been enhanced by technology. Such TENR and NORM exposures are shown to range from activities such as mining, oil and gas exploitation, the use of industrial by-products as building materials, to space travel to name but a few. In several cases quite high doses to some individuals are shown to occur. Accounts are given here of methods to prevent and reduce exposures to such sources.
A review of contemporary actinide research that focuses on new advances in experiment and theory, and the interplay between these two realms Experimental and Theoretical Approaches to Actinide Chemistry offers a comprehensive review of the key aspects of actinide research. Written by noted experts in the field, the text includes information on new advances in experiment and theory and reveals the interplay between these two realms. The authors offer a multidisciplinary and multimodal approach to the nature of actinide chemistry, and explore the interplay between multiple experiments and theory, as well as between basic and applied actinide chemistry. The text covers the basic science used in contemporary studies of the actinide systems, from basic synthesis to state-of-the-art spectroscopic and computational techniques. The authors provide contemporary overviews of each topic area presented and describe the current and anticipated experimental approaches for the field, as well as the current and future computational chemistry and materials techniques. In addition, the authors explore the combination of experiment and theory. This important resource: Provides an essential resource the reviews the key aspects of contemporary actinide research Includes information on new advances in experiment and theory, and the interplay between the two Covers the basic science used in contemporary studies of the actinide systems, from basic synthesis to state-of-the-art spectroscopic and computational techniques Focuses on the interplay between multiple experiments and theory, as well as between basic and applied actinide chemistry Written for academics, students, professionals and researchers, this vital text contains a thorough review of the key aspects of actinide research and explores the most recent advances in experiment and theory.
Polonium-210 is an alpha emitting radionuclide with no radioactive progeny and produces only very-low-intensity gamma rays at very low abundance. This means doses largely arise from internal exposure. In addition to the relatively high ingestion does coefficient of 210Po, radionuclide transfer in the environment results in high activity concentrations in certain foods. This publication focuses on radionuclide transfers in terrestrial, freshwater and marine environments, and provides information on key transfer processes, concepts and models--back cover.