Download Free Radiologic Physics Taught Through Cases Book in PDF and EPUB Free Download. You can read online Radiologic Physics Taught Through Cases and write the review.

High-yield, image-rich study guide presents complex physics concepts in reader-friendly format Physics is a key component of the American Board of Radiology core and certifying exams, therefore it is an essential area of study for radiology residents and young radiologists prepping for these exams. Radiology residents gather their medical physics knowledge from many sources, often beginning with their first encounter of a radiologic image. As such, Radiologic Physics Taught Through Cases by Jonathon A. Nye and esteemed contributors incorporates an image-rich, case-based layout conducive to learning challenging physics concepts. The book encompasses physical diagnostic radiology scenarios commonly encountered during residency in a format that fosters learning and is perfect for board preparation. Seven technology-specific chapters cover fluoroscopy, mammography, computed tomography, magnetic resonance imaging, nuclear medicine, ultrasound imaging, and image processing. Each chapter features 10 succinct case-based topics intended to quickly convey information. Key Highlights Every chapter starts with a general introduction, followed by case background, images, findings, and a brief explanation of the physical factors underlying the image's creation and displayed contrast Schematics detail important radiation safety topics, such as potential occupational or patient hazards related to fluoroscopic-guided procedures End-of-chapter references provide inspiration for further study Review questions with correct answers at the end of each chapter reinforce key concepts This is a must-have resource for residents prepping for the radiology core exam review and early-career radiologists looking for a robust study guide for radiology certification exam review.
High-yield, image-rich study guide presents complex physics concepts in reader-friendly format Physics is a key component of the American Board of Radiology core and certifying exams, therefore it is an essential area of study for radiology residents and young radiologists prepping for these exams. Radiology residents gather their medical physics knowledge from many sources, often beginning with their first encounter of a radiologic image. As such, Radiologic Physics Taught Through Cases by Jonathon A. Nye and esteemed contributors incorporates an image-rich, case-based layout conducive to learning challenging physics concepts. The book encompasses physical diagnostic radiology scenarios commonly encountered during residency in a format that fosters learning and is perfect for board preparation. Seven technology-specific chapters cover fluoroscopy, mammography, computed tomography, magnetic resonance imaging, nuclear medicine, ultrasound imaging, and image processing. Each chapter features 10 succinct case-based topics intended to quickly convey information. Key Highlights Every chapter starts with a general introduction, followed by case background, images, findings, and a brief explanation of the physical factors underlying the image's creation and displayed contrast Schematics detail important radiation safety topics, such as potential occupational or patient hazards related to fluoroscopic-guided procedures End-of-chapter references provide inspiration for further study Review questions with correct answers at the end of each chapter reinforce key concepts This is a must-have resource for residents prepping for the radiology core exam review and early-career radiologists looking for a robust study guide for radiology certification exam review.
Master the critical physics content you need to know with this new title in the popular Case Review series. Imaging Physics Case Review offers a highly illustrated, case-based preparation for board review to help residents and recertifying radiologists succeed on exams and demonstrate a clinical understanding of physics, patient safety, and improvement of imaging accuracy and interpretation. - Presents 150 high-yield case studies organized by level of difficulty, with multiple-choice questions, answers, and rationales that mimic the format of certification exams. - Uses short, easily digestible chapters and high-quality illustrations for efficient, effective learning and exam preparation. - Discusses current advances in all modalities, ensuring that your study is up-to-date and clinically useful. - Covers today's key physics topics including radiation safety and methods to prevent patient harm; how to reduce artifacts; basics of radiation doses including dose reduction strategies; cardiac CT physics; advanced ultrasound techniques; and how to optimize image quality using physics principles. - Enhanced eBook version included with purchase, which allows you to access all of the text, figures, and references from the book on a variety of devices
This publication is aimed at students and teachers involved in programmes that train medical physicists for work in diagnostic radiology. It provides a comprehensive overview of the basic medical physics knowledge required in the form of a syllabus for the practice of modern diagnostic radiology. This makes it particularly useful for graduate students and residents in medical physics programmes. The material presented in the publication has been endorsed by the major international organizations and is the foundation for academic and clinical courses in both diagnostic radiology physics and in emerging areas such as imaging in radiotherapy.
Weaponize Your Will - The Remastered 2nd Edition Radiologic Physics War Machine is programed to seek and destroy trivia questions. The text is designed for mastery and rapid review - totally unique is scope, flavor and presentation.
Research Methods in Radiology provides concise, practical insights on how to design clinical and experimental studies in diagnostic imaging. This unique resource encompasses contributions from leaders in academic radiology as well as top epidemiologists, biostatisticians, and librarians with vast multidisciplinary and radiology research experience. The material reflects years of expertise teaching core biostatistics in radiology principles to residents, fellows, radiologists, and epidemiologists. Given the vast amount of published information on research methodology and statistics in radiology, the authors' goal was to write a high-yield review and study tool rather than a comprehensive book. Key topics are succinctly addressed in each chapter, including measurements in radiology; decision analysis in radiology; and systemic reviews, evidence-based imaging, and knowledge translation. Online exercises related to each topic enable residents to prepare for radiology board examinations and research radiologists to apply knowledge to clinical studies. Key Highlights Introductory chapters on analysis of diagnostic tests, linear and logistic regression, meta-analysis, statistical inference, and economic evaluation provide easy-to-follow tutorials Each chapter includes learning objectives, basic concepts, supplementary tables, and ancillary online material Case studies with images, graphs, and tables highlight primary "take home" points Sample size calculations are illustrated for a wide range of research questions Code is included for use in R, free open-source software for statistical analysis This book is an indispensable review of research methodology for radiology students and residents. Practicing clinicians will also benefit from this precisely focused reference tool on clinical and experimental research.
This text is an invaluable, comprehensive data reference for anyone involved in health physics or radiation safety. This new edition addresses the specific data requirements of health physicists, with data presented in large tables, including the latest NCRP recommendations, which are tabulated and given in both SI and traditional units for ease of use. Although portions of these data can be obtained from various internet sites, many are obscure, difficult to navigate and/or have conflicting information for even the most common data, such as specific gamma ray constants. This new edition compiles all essential data in this vast field into one user-friendly, authoritative source. It also offers a website with full-text search capability. Markets include radiation safety, medical physics and nuclear medicine
Lippincott Williams & Wilkins is proud to introduce Essentials of Radiologic Science, the nucleus of excellence for your radiologic technology curriculum! An exciting new first edition, this core, comprehensive textbook for radiologic technology students focuses on the crucial components and minimizing extraneous content. This text will help prepare students for success on the American Registry of Radiologic Technologists Examination in Radiography and beyond into practice. Topics covered include radiation protection, equipment operation and quality control, image production and evaluation, and patient care. This is a key and crucial resource for radiologic technology programs, focusing on the most relevant information and offering tools and resources to students of multiple learning types. These include a full suite of ancillary products, a variety of pedagogical features embedded in the text, and a strong focus on the practical application of the concepts presented.
This book reviews the philosophies, theories, and principles that underpin assessment and evaluation in radiology education, highlighting emerging practices and work done in the field. The sometimes conflicting assessment and evaluation needs of accreditation bodies, academic programs, trainees, and patients are carefully considered. The final section of the book examines assessment and evaluation in practice, through the development of rich case studies reflecting the implementation of a variety of approaches. This is the third book in a trilogy devoted to radiology education. The previous two books focused on the culture and the learning organizations in which our future radiologists are educated and on the application of educational principles in the education of radiologists. Here, the trilogy comes full circle: attending to the assessment and evaluation of the education of its members has much to offer back to the learning of the organization.
A straightforward presentation of the broad concepts underlying radiological physics and radiation dosimetry for the graduate-level student. Covers photon and neutron attenuation, radiation and charged particle equilibrium, interactions of photons and charged particles with matter, radiotherapy dosimetry, as well as photographic, calorimetric, chemical, and thermoluminescence dosimetry. Includes many new derivations, such as Kramers X-ray spectrum, as well as topics that have not been thoroughly analyzed in other texts, such as broad-beam attenuation and geometrics, and the reciprocity theorem. Subjects are layed out in a logical sequence, making the topics easier for students to follow. Supplemented with numerous diagrams and tables.